Applied Mechanics and Materials Vols. 766-767

Paper Title Page

Abstract: Tensile, flexural and impact strength are considered as main criteria to determine the mechanical properties of any materials. These properties were determined for woven banana and glass fiber, reinforced epoxy composites. The hand-lay method of fabrication was employed in preparing the composites. Natural fibers offer both cost savings and reduction in density as well as environmental friendly when compare to glass fibers. As if the strength of natural fibers is not as remarkable as glass, fibers its specific properties are comparable.
110
Abstract: The developments in the field of composite materials are phenomenal. The use of natural fibers in the field of composite material is gaining importance. This is due to the advantages of natural fibers: they are eco-friendly, easily available, non-abrasive and cost effective. The combination of natural fiber with Glass fibers is used widely in many applications. In the current investigation Banana – Bamboo – Glass fiber reinforced composites is fabricated by Hand – Layup technique with varying fiber orientation and is tested for its tensile strength and the combination that would yield the best tensile strength is identified by using Taguchi Method.
116
Abstract: Polymers reinforced with synthetic fibers such as glass and carbon offer advantages of high stiffness and strength to weight ratio compared to conventional materials. Despite these advantages, the prevalent use of synthetic fiber-reinforced polymer composite has a tendency to demur because of high initial cost and most importantly their adverse environmental impact. On the contrary, the increased interest in using natural fibers as reinforcement in plastics to substitute conventional synthetic fibers in automobile applications has become one of the main concerns to study the potential of using natural fibers as reinforcement for polymers. In this regard, an investigative study has been carried out to make potential utilization of natural fibers such as Jute and Coir as reinforcements, which are cheap and abundantly available in India. The objective of the present research work is to study the effects of fiber loading and particle size; fiber loading and fiber length on the mechanical properties of Jute-PP and Coir-PP bio-composites respectively. The experiments were planned as per full factorial design (FFD) and response surface methodology (RSM) based second order mathematical models of mechanical properties have been developed. Analysis of variance (ANOVA) has been employed to check the adequacy of the developed models. From the parametric analysis, it is revealed that Jute-PP bio-composites exhibit better mechanical properties when compared to Coir-PP bio-composites.
122
Abstract: This paper deals with tensile properties of natural fiber reinforced polymer composites. Natural fibers have recently found increasing use in various fields as an alternative to synthetic fiber reinforced polymers. Due to this they have become attractive to engineers, researchers and scientists. Natural fibers are replacing conventional fibers such as glass, aramid and carbon due to their eco-friendly nature, lesser cost, good mechanical properties, better specific strength, bio-degradability and non-abrasive characteristics. The adhesion between the fibers and the matrix highly influence the tensile properties of both thermoset and thermoplastic natural fiber reinforced polymer composites. In order to enhance the tensile properties by improving the strength of fiber and matrix bond many chemical modifications are normally employed. In most cases the tensile strengths of natural fiber reinforced polymer composites are found to increase with higher fiber content, up to a maximum level and then drop, whereas the Young’s modulus continuously increases with increasing fiber loading. It has been experimentally found that tensile strength and Young’s modulus of reinforced composites increased with increase in fiber content [1].
133
Abstract: In this study, fabrication of flax-abaca hybrid composites is done using hand lay-up technique. The arrangement of the composite is such that a layer of flax fiber is mounted on both sides by abaca fiber layers. Glass fiber reinforced polymer is used for lamination on both sides. Mechanical characterisation is done by performing tensile test on the hybrid composites. The tensile behaviour is compared with those of composites containing any one of the constituents of the hybrid composites. Morphological analysis of the specimen after testing is performed.
140
Abstract: In the fast developing world, the concern for the environmental pollution and the prevention of non-renewable and non-biodegradable resources has attracted researchers seeking to develop new eco-friendly materials and products based on sustainability principles. The fibers from the natural sources provide indisputable advantages over synthetic reinforcement materials such as low cost, low density, non-toxicity, comparable strength, and minimum waste disposal problems. In the present experimental study, flax and glass fibers reinforced epoxy composites are prepared and the mechanical properties of these composites are evaluated. The samples were subjected to the mechanical testing such as tensile, flexural and impact loading. Scanning electron microscope (SEM) analysis is carried out to evaluate fiber matrix interfaces and analyze the structure of the fractured surfaces.
144
Abstract: The structural components made from the composite materials possess outstanding advantages like reliable mechanical properties, durability, and good corrosion resistance, and low density. They also exhibit high impact resistance and good damage tolerance. These merits of composite structures draw the attention of scientists, engineers and researchers in generally the stability of composite structures is verified by carrying out buckling analysis. The aircraft components are made up of laminated composite plates are subjected to buckling analysis, in order to confirm whether the component withstand the critical in plane loads. Composite structural plates provided with circular cut out, square cut out and rectangular cut-out are widely used as structural members in aircraft and vehicle design. The different holes are provided in these members can be access holes, pass-through holes for any hardware or holes for windows and doors. Sometimes these holes are produced for weight reduction in the composite structural components. In this present study, buckling experiments were carried out on Epoxy/woven glass fiber laminated composite plate specimens and the influence of different cut-out shapes like circular, square and rectangle are examined and determined experimentally. Boundary conditions free and clamped were considered for all the experiments. After the buckling experiments, comparisons were made between these two test results. These results show the effect of various cut-out shapes on the buckling load.
150
Abstract: In the present study, enhancement of abrasion resistance of phenol formaldehyde (PF) resin based hybrid friction composites with different ingredients viz. binder, micron sized fibers and fillers have been synergistically investigated. Hybrid friction composites based on basalt and recycled aramid fibers were prepared using compression moulding. Three-body abrasive wear tests were conducted according to ASTM G-65 standard by dry sand/rubber wheel abrasion tester using two different size of angular silica sand abrasives (212 and 425 μm) at a constant load of 40 N. The results indicated that the wear volume loss increases with increasing abrading distance and abrasive particle size. However, the specific wear rate decreased with increasing abrading distance and increases with increase in abrasive particle size. Addition of fiber content has a significant influence on the abrasive wear performance of these composites. Further, the worn surfaces were examined by scanning electron microscopy to identify the involved wear mechanisms.
156
Abstract: Over the past two to three decades the development in the field of composite material is immense and continues to be increasing. The utilization of natural fibers in the field of composites is increasing day by day. This is due the fact that natural fibers are eco-friendly, easily available, non-abrasive and economical. The combination of natural fiber with Glass fibers is finding increased applications. In the current investigation Banana – Bamboo – Glass fiber reinforced composites is fabricated by the method of Hand – Layup with variable fiber orientation and is tested for its flexural strength and the best flexural strength is identified by using Taguchi Methodology. Nomenclature Used: BN – Banana Fiber BM – Bamboo Fiber G – Glass fiber DOE – Design of Experiments S/N Ratio – Signal to Noise Ratio OA – Orthogonal Array.
162
Abstract: Due to desirable properties and its role of natural and manmade fibers reinforced composite materials are growing in a faster rate in the field of engineering and technology. Now-a-days the treated natural composites are serves better in terms of corrosive resistance, and other desirable properties when compared to the traditional materials. The main aim of this experimental study is to fabricate and investigate the mechanical properties such as tensile strengths, flexural strengths and impact strengths of NaOH treated and hemp-banana-glass fibers reinforced hybrid composites. From the experimental results, it has been noted that the treated hemp-banana-glass fibers reinforced hybrid epoxy composites exhibited superior properties and used as an alternate material for synthetic fiber reinforced composite materials. Morphological studies are carried out to analyze the interfacial characteristics, internal structures, fiber failure mode and fractured surfaces by using scanning electron microscopy (SEM) analysis.
167

Showing 21 to 30 of 194 Paper Titles