Applied Mechanics and Materials Vol. 891

Paper Title Page

Abstract: Lithium Nickel Manganese Cobalt Oxide (LiNi0.75Mn0.15Co0.10O2: NMC) is become interested materials for lithium battery applications due to high specific energy and low cost. The pure phase and well-ordered layered structure has been synthesized by co-precipitation method. In this study, the Nickel-rich LiNi0.75Mn0.15Co0.10O2 positive electrode powder was prepared using co-precipitation method. The influence of synthesis parameters such as calcination temperature, time and amount of water for rinse a NaOH and NH4OH were studied. Then, phase formation and structure were studied by X-ray Powder Diffraction (XRD). The morphological changes is also confirmed by scanning electron microscope (SEM). A checking weight loss by thermo gravimetric Analysis (TGA). Finally, the optimum parameter to prepare highest pure NMC powder are rinse suddenly until pH 7 and calcination only single1 step.
206
Abstract: Leucite has been widely used as a constituent of dental ceramics to modify the coefficient of thermal expansion. This is most important where the ceramic is to be fused or baked onto metal. However, its physical property was unpredictable since it was sensitive to several parameters such as sintering temperature and concentration of raw materials. In this research study, leucite ceramic particles were synthesized by in-house sol-gel process. The morphology and size of our synthesized leucite particles were analyzed by SEM, vicker hardness and XRD, respectively. It was revealed that the sintering temperature played the important role on several properties of leucite ceramic particles.
214
Abstract: Silicone based coating was considered a high performance coatings used to preserve or protect a variety of different materials. However, its mechanical property was a weakness for using in several applications. In this research study, leucite ceramic particles were added to silicone coating in order to improve some mechanical properties. Leucite ceramic particles were synthesized by in-house sol-gel process. The morphology and size of our synthesized leucite particles were analyzed by SEM and XRD, respectively. It was revealed that the concentration and size of leucite ceramic particles played the important role on several properties of silicone coating.
219
Abstract: The magnetic properties of Ba2FeMoO6 (BFMO) double perovskite are investigated. BFMO samples were prepared by solid state reaction method through compression. Magnetic properties are influenced by electron environments of the Fe3+ and Mo5+ ions within the perovskite structure. BFMO sintered at 800 oC exhibited the largest hysteresis loop at 50 K. In addition, the values of Ms and Mr indicate ferromagnetic behaviour in BFMO ceramics sintered at 800 oC for different times up to 10 hours. Using the Curie-Weiss law fitting to investigate μeff~30μB high spin of Fe and Mo, and negative θ present the antiferromagnetic characteristics of the BFMO sample.
224
Abstract: The magnetic properties of BaFeTiO3 (BTFO) perovskite are investigated. BTFO samples were prepared by solid state reaction method through compression. Magnetic properties are influenced by electron environments of the Fe3+ ions within the perovskite structure. Furthermore, the values of Ms and Mr indicate ferromagnetic behaviour in BFMO ceramics sintered at 800 oC for sintering as 800 oC for 6 hours at 1.898 emu/g, which is magnetization strength material more than sintering at 4 hours, 8 hours, 10 hours as 1.794 emu/g, 1.333 emu/g and 1.192 emu/g at measured of low temperature. Using the Curie-Weiss law fitting for investigate μeff~38μB high spin of Fe, negative of θ present to antiferromagnetic characteristics of BTFO sample. Finally, BTFO sintering at the high temperature of 800 oC for 6 hours exhibited the high Ms~1.898 emu/g at 50 K and ~1.216emu/g at room temperature.
230
Abstract: Power quality (PQ) has become a more important issue recently due to the use of more sophisticated and sensitive equipment. Medical devices, telecommunication servers and equipment, manufacturing and domestic appliances rely on a good supply of power. This paper presents the review of the power quality in power system. Power quality has always been important for customers, but with increasing applications of electronic loads and controllers sensitive to the power quality, the subject has attracted renewed interest in recent times. Power quality encompasses several aspects: harmonics, over voltage, flicker voltage sags and swells interruptions etc. A major factor contributing to the importance of the quality of power is the deregulation of the power industry. Customers will demand higher levels of power quality to ensure the proper and continued operation of sensitive equipment and processes.
239
Abstract: This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in power system. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/ reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. PSO is applied to solve the OPF problem for optimal power flow the optimal power flow program output becomes a schedule to be used by operators in the process of OPF-PSO (Optimal Power Flow - Particle swarm optimization) PSO applied to optimal reactive power dispatch is evaluated on an IEEE 30-bus power system. The optimization strategy is general and can be used to solve other power system optimization problems as well.
246
Abstract: This article presents the design and construction of a mini magnetic levitation train. The design of the train is based on the theory of 3-phase Linear Induction Motor (LIM). The train consists of two main sections. The first part is the linear induction motor, which is the part that drives the train to move. The second part is the magnetic field winding, which is the part that raises the body of the train to float over the rails. Such train can move forward/backward in the same principle as forward/reverse rotation control of 3-phase induction motors. For that reason, this research controls the forward/backward movement of the train with a magnetic contactor set by using the same circuit as the control of the rotation of the 3-phase induction motor. The designed train can lift 1 mm above the rails and move within a distance of 1.48 m along the length of the rails. The test results showed drive voltage, drive force, average time and drive speed of the train. From the details and results of this article can be used as a guide to create a larger magnetic levitation train, which can be used more effectively.
253
Abstract: In constructing the low energy accelerator for plant modification the most important part is the ion source. In the conventional cold cathodes and hot filament ion source methods the filament continuously burns out over time, has a shorter lifespan and requires venting of the ion source to atmosphere. Henceforth the Radio frequency (RF) antenna ion source or “non-thermionic ion source” with 13.6 MHz was used in the accelerator as well as it being easy to generate varie the plasma souce and stability. This ion source can produce a particle beam of about ~30 to 40 mA current. The ion particle was extracted by the first zero voltage extraction rod electrode method focusing the ion beam of 0-30 kV with the second rod electrode after which the third rod electrode has zero voltage. In calculating and designing this system via the Simion8.0 Program, the result showed that the Ar+ ion beam with 30 keV can be focused with 1 cm diameter beam at the distance of 10 cm of the drift space.
263
Abstract: The ultrasonic mold was designed for the ceramic powder compression. CAD and CAE were used in the design to analyze the mold strength and its natural frequency. The study of stress distribution and compression in upper and lower punch, mold body and waveguide comparison of stresses was analyzed by FEA experiments under maximum compression at 50,000 N to validate the results of both methods and the mold natural frequency. The difference between FEA and experimental analysis was 3-7%, acceptable. The redesign results in a cylindrical mold body with the outer diameter of 80 mm, the height of 100 mm, and the upper punch of 125 mm in length. The six sides are 26 mm of the high waveguide with 100 mm height. The internal and external diameters are 80 and 110 mm, respectively. The mold has been redesigned and can support the maximum compression force of 1,500 kN. with the bearing steel, AISI 52100, obtainable hardness 65 HRC, the stress concentration occurs at the neck of the upper punch using the ultrasonic at 12.00 to 12.45 kHz.
269

Showing 31 to 40 of 44 Paper Titles