[1]
Li X., Zell A. (2009) Motion Control of an Omnidirectional Mobile Robot. In: Filipe J., Cetto J.A., Ferrier JL. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 24. Springer, Berlin, Heidelberg.
DOI: 10.1007/978-3-540-85640-5_14
Google Scholar
[2]
L. E. Dubins, On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents,, Amer. J. Math., vol. 79, p.497–516, (1957).
DOI: 10.2307/2372560
Google Scholar
[3]
J. A. Reeds and R. A. Shepp, Optimal paths for a car that goes both forward and backward," Pacific J. Math., vol. 145, no. 2, p.367–393, 1990.K. Elissa, "Title of paper if known,, unpublished.
DOI: 10.2140/pjm.1990.145.367
Google Scholar
[4]
F. Lamiraux and J. -. Lammond, Smooth motion planning for car-like vehicles,, in IEEE Transactions on Robotics and Automation, vol. 17, no. 4, pp.498-501, Aug. (2001).
DOI: 10.1109/70.954762
Google Scholar
[5]
Elbenhawi, M, Simic, M and Nakhaie Jazar, G 2014, Continuous-curvature bounded trajectory planning using parametric splines, in R. Neves-Silva, G. A. Tshirintzis, V. Uskov, R. J. Howlett and L. C. Jain (ed.) Frontiers in Artificial Intelligence and Applications: Volume 262: Smart Digital Futures 2014, IOS Press BV, Netherlands, pp.513-522.
Google Scholar
[6]
Eng, You & Teo, Kwong Meng & Chitre, Mandar & Ming Ng, Kien. (2015). Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments. IEEE Journal of Oceanic Engineering. 41. 1-1. 10.1109/JOE.2015.2403576.
DOI: 10.1109/joe.2015.2403576
Google Scholar
[7]
Cai, W., Zhang, M., & Zheng, Y. (2017). Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves †. Sensors, 17(7), 1607.
DOI: 10.3390/s17071607
Google Scholar
[8]
Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 1957, 79, 497–516.
DOI: 10.2307/2372560
Google Scholar
[9]
Farin, G. (2002). A History of Curves and Surfaces in CAGD. Handbook of Computer Aided Geometric Design, 1–21.
DOI: 10.1016/b978-044451104-1/50002-2
Google Scholar
[10]
C. De Boor, On calculating with B-splines,, Journal of Approximation Theory, vol. 6, pp.50-62, (1972).
Google Scholar
[11]
Piegl, L., & Tiller, W. (1997). The NURBS Book. Monographs in Visual Communication.
DOI: 10.1007/978-3-642-59223-2
Google Scholar
[12]
J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, A. K. Peters, Wellesley, Mass, USA, (1993).
Google Scholar
[13]
Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2-4), 311–338.
DOI: 10.1016/s0045-7825(99)00389-8
Google Scholar