The Fractographic Analysis of Tensile and Fatigue Fracture Surfaces in Secondary A356 Aluminum Alloy with a Higher Concentration of Iron

Article Preview

Abstract:

A significant number of different metals are present in aluminum alloy scrap and waste. Secondary aluminum cast alloys, made by recycling from scrap and waste, have as the main impurity Fe. Fe reduction is a very economically and technologically expensive process and therefore there is a growing interest in researching such materials. Moreover, the higher content of Fe leads to the formation of brittle Fe-rich phases, leading to faster propagation of fracture in castings. Therefore, this study reflected on secondary aluminum cast alloy with a higher concentration of Fe and research their effect on brittle Fe-rich phase formation (in the needle; plate-like form) and propagation of fracture in the castings. This study confirms the increasing amount of needle Fe-rich phases in the melt with higher content of Fe. The increasing amount of such phases leads to the formation of a large number of cleavage fractures on fracture surfaces. Although the cleavage fracture increased, the experimental results show low changes in the properties of all experimental melts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. O. Mbuya, Influence of iron on castability and properties of aluminium silicon alloys. Int. J. Cast Met. 16 (2003) 451-465.

DOI: 10.1080/13640461.2003.11819622

Google Scholar

[2] M. Cagala, M. Bruška, P. Lichý, J. Beňo, N. Špirutová, Influence of aluminium-alloy remelting on the structure and mechanical properties, Mater. Technol. 47 (2013) 239-243.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/1/31

Google Scholar

[3] K. Al-Helal. J. Lazaro-Nebreda, J.B. Patel, G.M. Scamans, high-Shear de-Gassing and de-Ironing of an aluminum casting alloy made directly from aluminum end-of-life vehicle scrap, Recycling 6 (2021) 66.

DOI: 10.3390/recycling6040066

Google Scholar

[4] L. Muchová, P. Eder, End-of-waste criteria for aluminum and aluminum alloy scrap, Technical Proposals (2010), EUR 24396 EN – 2010, ISSN 1018-5593.

Google Scholar

[5] N. Y. Mansurov, A. R. Rikhsiboev, S. Y. Mansurov, Features of multicomponent secondary aluminum alloy structure formation, Metallurgist 63 (2020) 11-12.

DOI: 10.1007/s11015-020-00952-7

Google Scholar

[6] J. Kasinska, D. Bolibruchová, M. Matejka, The Influence of Remelting on the Properties ofAlSi9Cu3 Alloy with Higher Iron Content, Materials 13 (2020) 575.

DOI: 10.3390/ma13030575

Google Scholar

[7] Y. Zhao, D. Song, H. Wang, Y. Jia, B. Lin, Y. Tang, Y. Tang, D. Shu, Z. Sun, Y. Fu, W. Zhang, Revealing the Influence of Fe on Fe-rich Phases Formation and Mechanical Properties of Cast Al-Mg-Mn-Fe Alloys, Journal of Alloys and Compounds 901 (2021) 163666.

DOI: 10.1016/j.jallcom.2022.163666

Google Scholar

[8] L. Kuchariková, D. Medvecká, E. Tillová, J. Belan, M. Kritikos, M. Chalupová, M. Uhríčik, The effect of the β-Al5FeSi phases on microstructure, mechanical, and fatigue properties in A356.0 cast alloys with higher Fe content without additional alloying of Mn. Materials 14 (8) (2021) 1943.

DOI: 10.3390/ma14081943

Google Scholar

[9] D. Bolibruchová, L.Richtárech, Effect of adding iron to the AlSi7Mg0.3 (EN AC 42 100, A356) alloy, Manufacturing technology 13 (3) (2013) 276-281.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/3/276

Google Scholar

[10] W. S. Ebhota, T. C. Jen, Intermetallics formation and their effect on mechanical properties of Al-Si-X Alloys, Intermetallic compounds – formation and applications, 2018.

DOI: 10.5772/intechopen.73188

Google Scholar

[11] Z. Ma, A.M. Samuel, H. W. Doty, F. H. Samuel, On the Fractography of Impact-Tested Samples of Al-Si Alloys for Automotive Alloys. Fracture mechanics – properties, patterns and behaviors, 2016.

DOI: 10.5772/63409

Google Scholar

[12] T. O. Mbuya, Influence of iron on castability and properties of aluminium silicon alloys. Int. J. Cast Met. 16 (2003) 451-465.

DOI: 10.1080/13640461.2003.11819622

Google Scholar

[13] L. Zhang, J. Gao, L. N. W. Damoah, D. G. Robertson, Removal of Iron From Aluminum: A Review, Mineral Processing and Extractive Metallurgy Review 33 (2) (2012) 99-157.

DOI: 10.1080/08827508.2010.542211

Google Scholar

[14] J. Pezda, Optimization of Heat Treatment Parameters of AlSi7Mg Alloy. Materials 15 (2022) 1163.

DOI: 10.3390/ma15031163

Google Scholar

[15] J. Sena, et al, Influence of chemical composition and impurities on microstructure and formation of intermetallic phases in selected aluminum alloys. Proceedings 29th International Conference on Metallurgy and Materials (2020) 1174-1180.

DOI: 10.37904/metal.2020.3622

Google Scholar