[1]
O.M. Steinhauser, Computational Multiscale Modeling of Fluids and Solids, Springer Verlag, (2008).
Google Scholar
[2]
W. E, Principles of Multiscale Modeling, Cambridge University Press, (2011).
Google Scholar
[3]
P. Macioł, L. Gotfryd, A. Macioł, Knowledge based system for runtime controlling of multiscale model of ion-exchange solvent extraction, in: AIP Conference Proceedings, ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics, American Institute of Physics, Kos, Greece, (2012).
DOI: 10.1063/1.4756078
Google Scholar
[4]
P. Macioł, A. Krumphals, S. Jędrusik, A. Macioł, C. Sommitsch, Rule-based expert system application to optimizing of multiscale model of hot forging and heat treatment of Ti-6Al-4V, in: V International Conference on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2013, Ibiza, (2013).
Google Scholar
[5]
P. Macioł, R. Bureau, C. Sommitsch, An Object-Oriented Analysis of Complex Numerical Models, in: Key Engineering Materials, (2014) 1356–1363.
DOI: 10.4028/www.scientific.net/kem.611-612.1356
Google Scholar
[6]
J.R. Terkildsen, S. Niederer, E.J. Crampin, P. Hunter, N.P. Smith, Using Physiome standards to couple cellular functions for rat cardiac excitation-contraction., Experimental Physiology. 93 (2008) 919–29.
DOI: 10.1113/expphysiol.2007.041871
Google Scholar
[7]
J. Cooper, A. Corrias, D. Gavaghan, D. Noble, Considerations for the use of cellular electrophysiology models within cardiac tissue simulations., Progress in Biophysics and Molecular Biology. 107 (2011) 74–80.
DOI: 10.1016/j.pbiomolbio.2011.06.002
Google Scholar
[8]
H. Keitel, G. Karaki, T. Lahmer, S. Nikulla, V. Zabel, Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis, Engineering Structures. 33 (2011) 3726–3736.
DOI: 10.1016/j.engstruct.2011.08.009
Google Scholar
[9]
J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B. Chopard, et al., Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment, Journal of Computational Science. 5 (2014) 719–731.
DOI: 10.1016/j.jocs.2014.04.004
Google Scholar
[10]
U.F. Kocks, Laws for Work-Hardening and Low-Temperature Creep, Journal of Engineering Materials and Technology. 98 (1976) 76.
DOI: 10.1115/1.3443340
Google Scholar
[11]
E. Nes, Modelling of work hardening and stress saturation in FCC metals, Progress in Materials Science. 41 (1997) 129–193.
DOI: 10.1016/s0079-6425(97)00032-7
Google Scholar
[12]
F. Roters, D. Raabe, G. Gottstein, Work hardening in heterogeneous alloys—a microstructural approach based on three internal state variables, Acta Materialia. 48 (2000) 4181–4189.
DOI: 10.1016/s1359-6454(00)00289-5
Google Scholar
[13]
D. Hull, D.J. Bacon, Introduction to Dislocations, 4th ed., Butterworth-Heinemann, (2001).
Google Scholar
[14]
Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metallurgica. 32 (1984) 57–70.
DOI: 10.1016/0001-6160(84)90202-5
Google Scholar
[15]
E. Kabliman, P. Sherstnev, Integrated Modeling of Strength Evolution in Al-Mg-Si Alloys during Hot Deformation, in: Materials Science Forum, (2013) 429–433.
DOI: 10.4028/www.scientific.net/msf.765.429
Google Scholar