Key Engineering Materials
Vol. 663
Vol. 663
Key Engineering Materials
Vol. 662
Vol. 662
Key Engineering Materials
Vol. 661
Vol. 661
Key Engineering Materials
Vol. 660
Vol. 660
Key Engineering Materials
Vol. 659
Vol. 659
Key Engineering Materials
Vol. 658
Vol. 658
Key Engineering Materials
Vols. 656-657
Vols. 656-657
Key Engineering Materials
Vol. 655
Vol. 655
Key Engineering Materials
Vol. 654
Vol. 654
Key Engineering Materials
Vols. 651-653
Vols. 651-653
Key Engineering Materials
Vol. 650
Vol. 650
Key Engineering Materials
Vol. 649
Vol. 649
Key Engineering Materials
Vol. 648
Vol. 648
Key Engineering Materials Vols. 656-657
Paper Title Page
Abstract: For better selection of coated cutting tools, TiAlN (Ti50Al50N) and CrAlN (Cr50Al50N) coatings were deposited onto ball-nose and square end mills using arc evaporation, and their cutting performances were evaluated using steel workpieces of various hardnesses. In particular, cutting tests were performed on three types of workpieces, made from S50C, SKD61, and SKD11 steels, having Brinell hardness numbers of HB220, HRC40, and HRC60, respectively. The results of the cutting experiments were elucidated and discussed in terms of the mechanical properties and anti-oxidation resistances of the different coatings. The results revealed that TiAlN-coated square end mills at high cutting speeds (V = 200 m/min ) had superior performance when used on steels with high hardness (SKD11), whereas CrAlN-coated ball-nose end mills were superior when used on low hardness steel (S50C). Therefore, CrAlN-coated ball-nose end mills are concluded to be suitable for the machining of low hardness steels, whereas TiAlN-coated square end mills are preferable for the machining of high hardness steels (SKD11).
231
Abstract: It is well known that a series of cracks running perpendicular to the cutting edge are sometimes formed on the rake face of brittle cutting tools during intermittent cutting. The cutting tool is exposed to elevated temperatures during the periods of cutting and is cooled quickly during noncutting times. It has been suggested that repeated thermal shocks to the tool during intermittent cutting generate thermal fatigue and result in the observed thermal cracks. Recently, a high speed machining technique has attracted attention. The tool temperature during the period of cutting corresponds to the cutting speed. In addition, the cooling and lubricating conditions affect the tool temperature during noncutting times. The thermal shock applied to the tool increases with increasing cutting speed and cooling conditions. Therefore, to achieve high-speed cutting, the evaluation of the thermal shock and thermal crack resistance of the cutting tool is important. In this study, as a basis for improving the thermal shock resistance of brittle cutting tools during high-speed intermittent cutting from the viewpoint of cutting conditions, we focused on the cooling conditions of the cutting operation. An experimental study was conducted to examine the effects of noncutting time on thermal crack initiation. Thermal crack initiation was found to be restrained by reducing the noncutting time. In the turning experiments, when the noncutting time was less than 10 ms, thermal crack initiation was remarkably decreased even for a cutting speed of 500 m/min. In the milling operation, the number of cutting cycles before thermal crack initiation decreased with increasing cutting speed under conditions where the cutting speed was less than 500 m/min. However, when the cutting speed was greater than 600 m/min, thermal crack initiation was restrained. We applied the minimal quantity lubrication (MQL) coolant supply to the intermittent cutting operation. The experimental results showed that the MQL diminished tool wear compared with that under the dry cutting condition and inhibited thermal crack initiation compared with that under the wet cutting condition.
237
Abstract: The increase of world requirements for improved products joined to growing competition between companies in the global market makes the same seek processes that ensure lower costs allied to high productivity and high quality product. Therefore, the great industrial and technological development has been increased the search for machining processes that promote, for example, high performance as regards the chip removal, less tool wear, failure and reduced impact on the environment. Regarding nickel-based superalloys, they have an extremely important role in the aeronautical and automotive industries among others. The nickel-based superalloy studied is the Nimonic 80A, hard machine material that has high mechanical strength and corrosion resistance on higher temperatures. The objective of this report is to study the influence of the application of cutting fluids in turning and the machining parameters in order to achieve high performance and optimization of machining this alloy. This one was machined using various machining parameters: cutting speed, feed rate, cutting depth, Minimum Quantity fluid (MQF), and Fluid abundant. After turning chip samples were obtained, was measured the surface roughness, volume of chip removed, cutting length and macro structural, some analyzes were performed and of lifetime of the tools were used in order to detect possible wear, as well as, microstructural observation of the chips by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).On this report, we can observe the behavior of the materials and tools in the two cooling conditions used, and also, the impacts of the parameter variations in the surface finish, on the structure of the material and performance of the tools in respect chip removal regarding volume removed and machined length. Application by MQF was promising, but there is an abundant beyond the traditional application.
243
Abstract: Conventionally, chip breakers are utilized for efficient chip disposal, where the chip is assisted to curl up and broken into pieces. However, this approach may not work effectively in cutting of highly-ductile materials such as low-carbon steels or heat-resistant alloys. The problem of chip jam may frequent occur especially in finishing operation, since the chip is thin and flexible [1]. In order to suppress chip-jam, the authors have proposed a new method, called the ‘chip-guiding turning’ [2]. Fig. 1 shows the concept of chip-guiding turning briefly. In this method, instead of breaking the chip, it is continuously guided to a desired direction for continuous disposal.
251
Abstract: This paper discusses the cutting temperature and cutting force in end milling difficult-to-cut materials cooled with several types of mists and low-temperature air. The cutting tool was a throwaway end mill with a carbide tip coated with titanium aluminum nitride. The Ti-6Al-4V titanium alloy and AISI D2 hardened steel were used as workpieces. The tool flank temperature and cutting force were measured simultaneously during side milling. The temperature was measured using a two-color pyrometer with an optical fiber. Oil mist and water mist from a mist generator were supplied to the cutting point along with cold air at approximately -27 °C. Compared with dry cutting, the cooling effects of supplying an oil mist and/or cold air were less than for other supply conditions in titanium alloy cutting. However, when water mist was added, the tool flank temperature clearly decreased. The cutting force increased for cases that included water mist. The adhesion of the titanium alloy to the cutting edge of the worn tool was significantly suppressed by supplying water and oil mist with cold air. Tool flank wear also decreased under those lubrication conditions.
255
Abstract: A method for estimating the cutting characteristics of spiral tap by fluctuation of cutting forces is proposed. The behavior of torque and thrust in tapping is influenced by the change of cutting state. Therefore in this method the fluctuation of cutting forces is depicted in the torque-thrust plane in which the horizontal axis and the vertical axis indicate thrust and torque respectively. Tapping of stainless steel AISI 304 was conducted with several coated spiral taps attached to an axial floating tap holder. The tool edge temperature was also measured by a two-color pyrometer with an optical fiber. When the fluctuating of forces in the torque-thrust plane was similar to a theoretical pattern, the surface of thread did not have obvious geometric damage. In this cutting conditions, there is a strong correlation between tool edge temperature and cross-sectional cutting area.
261
Abstract: There is the grade as one of the selection criteria of a grinding wheel like WA whetstone or GC whetstone. The grade of grinding wheel is defined as an index which shows the strength of connection of a grain and a grain, and is usually estimated by bending strength. There are many papers about the relationship between the grade of a grinding wheel and the grinding performance. And, the relationship between the grade of a grinding wheel and the grinding performance is almost clear. Also, the relationship between mechanical properties of a grinding wheel and the grade is also clear. On the other hand, since the grain layer of a super abrasive grinding wheel is thin, it is difficult to apply the conventional evaluation test of the grade. And, the evaluation method of the grade which can be adapted the super abrasive grinding wheel is not established. In addition, since the grade of a super abrasive grinding wheel is a manufacture manufacturer's original standard, there is a minute difference by manufacturer. The super abrasive grinding wheel as well as the grinding wheel is conjectured that the grade influences the grinding performance. Namely, it is important to relate the grade and the mechanical properties of a grain layer. However, researches which relate the grade, the grinding performance and the mechanical properties of a super abrasive grinding wheel are not done so far. Therefore, this study examined the relationship between the mechanical properties of a grain layer of a super abrasive grinding wheel and the grade, the grinding performance. The final objective of this study is to evaluate the grinding performance from mechanical properties of a grain layer of a super abrasive grinding wheel. The purpose of this report is to clarify relationship between the grade and the grinding force in a resinoid bond diamond wheel. The specific experiment procedure is as follows. When carrying out surface grinding of the diamond sticks using a grinding wheel, the relationship of the grade and the grinding force was clarified. And based on the knowledge acquired in this experiment, relationship between the grade of a super abrasive grinding wheel and the grinding force was considered. As the results, it confirmed that the grade of a resinoid bond diamond wheel could be evaluated by the grinding force.
266
Abstract: The effects of the feed rate and the axial and radial depth of cut in the up and down asymmetrical face milling with respect to workpiece about the orthogonal components (axial, radial and tangential) of the cutting force in the machining of cast iron DIN GGG50 with carbide inserts was evaluated. The spindle speed was remained constant. The cutting forces were acquired through a sensory system that consists of piezoelectric dynamometer, signal acquisition board and computer with appropriate software. In the end it was concluded that studies of machining forces provides a strong basis for understanding the kinematics and the dynamics of the tool and the cutting operation and it can be applied to optimize the cutting geometries and test the probabilities of tool distortions.
271
Abstract: Precision grinding is one of the important processes for finishing of hardened steel parts. However, the grinding process might be quite costly providing the parts with shape complexity should be finished because a number of production steps are needed. Also, this process has some environmental issues, such as disposal of a large amount of grinding sludge and grinding fluid. Precision cutting would become a better alternative process to reduce cost and environmental burden because process steps can be simplified by use of CNC machine tools with PcBN cutting insert if deterioration of cutting tool edge by wear and chipping can be suppressed for long duration. In this study, to improve performance of a PcBN cutting insert, such as wear resistance and defect resistance by the applying of pulse laser processing to sharpen cutting edge in order to realize substitution of cutting for grinding. Precision cutting experiments for hardened steel are conducted by use of the PcBN insert with sharp and tough edges processed by pulsed laser and, for comparison, by use of the PcBN insert ground with diamond wheel. From the results of cutting experiments, it was found that precision cutting with PcBN insert processed by pulsed laser can provide a steady cutting state for a long cutting duration, and a smooth finished surface comparable to precision grindings.
277
Abstract: The grinding performance of wheel remarkably decreases by the wheel loading in dry grinding of precision hard carbon parts. When the wheel loading occurs, the dressing is carried out to remove loading chips for generation of the grinding performance. However, many abrasive grains, which have enough cutting ability under loading chips, are removed in dressing. We therefore have developed the wheel surface cleaning using adhesive films without dressing to remove loading carbon chips on wheel surfaces in our previous reports, and the cleaning could achieve the lean regeneration of grinding performance of fine grade diamond wheels. The removing ability of loading chips is improved by increasing the peeling speed of adhesive film, the pressing time of adhesive films or the number of pressing time. However the optimum cleaning condition has not been investigated. In this report, from the viewpoint of efficiency in the treatment, we therefore investigate the optimum rolling press process of adhesive film on loading disc wheel surfaces in dry grinding of carbon. The optimum treatment processes are experimentally made clear, analyzing SPa of cleaned wheel surfaces, which is one of surface roughness parameters having the correlation with the protrusion height of abrasive grains. Furthermore, the effect of the treatment on regeneration of grinding performance is experimentally verified by grinding tests of hard carbons.
283