Key Engineering Materials
Vol. 898
Vol. 898
Key Engineering Materials
Vol. 897
Vol. 897
Key Engineering Materials
Vol. 896
Vol. 896
Key Engineering Materials
Vol. 895
Vol. 895
Key Engineering Materials
Vol. 894
Vol. 894
Key Engineering Materials
Vol. 893
Vol. 893
Key Engineering Materials
Vol. 892
Vol. 892
Key Engineering Materials
Vol. 891
Vol. 891
Key Engineering Materials
Vol. 890
Vol. 890
Key Engineering Materials
Vol. 889
Vol. 889
Key Engineering Materials
Vol. 888
Vol. 888
Key Engineering Materials
Vol. 887
Vol. 887
Key Engineering Materials
Vol. 886
Vol. 886
Key Engineering Materials Vol. 892
Paper Title Page
Abstract: Dissimilar weld-metal joints in aluminum alloys 5083 and 6061-T6 are often found in aircraft, railroad structures, ships, bridges, oil platforms, and building structures. However, welding of dissimilar metals is relatively more difficult due to the different metallurgy and thermophysical properties of the two alloys. The purpose of this study is to evaluate the physical-mechanical properties of the Tungsten Arc Welding (GTAW) process through numerical simulations of different welded joints between the 5083 and 6061-T6 aluminum alloys. The GTAW welding simulation process is carried out by 300 x 100 x 3 mm plate butt joints along 300 mm. GTAW weld metal is prepared for tensile test samples and metal alloy composition, the test is observed in the base metal and welded area. The results of the chemical composition test of the weld metal obtained that the composition is close to Al 5083 base metal so that the mechanical properties of the weld metal tend to be identical with Al 5083 alloy. The results of numerical simulation on the mechanical properties of GTAW weld metal at temperature conditions of 25 to 700 °C obtained several things, including 1) the range of thermal conductivity decreased from 174.393 to 86.424 W/mK. 2) The density increased from 2,348 to 2,663 gr/cm3. 3), the young modulus appears to decrease from 68,667 to 0 GPa. 4) the shear modulus decreases from 25,724 to 0 GPa. 5) the type of heat increases from 0.904 to 17,306 J/gK, and 6) the Poisson ratio increased from 0.335 to 0.5.
150
Abstract: The welding between two different grades of aluminum alloy, specifically AA5083 and AA6061-T6, is very difficult to obtain optimal results when using conventional welding methods such as TIG/MIG welding. Therefore, a solid-state joining technique is highly recommended to overcome these problems, one of which is friction stir welding (FSW). The effect of rotation speed on microstructure, microhardness, and tensile properties of dissimilar Friction Stir welded AA5083 and AA6061-T6 aluminum alloys were investigated. Three different rotation speeds (910, 1500, and 2280 rpm) were used to weld the dissimilar alloys. The metallographic analysis of joints showed the presence of various zones such as BM (base material), HAZ (heat affected zone), TMAZ (thermo-mechanically affected zone), and NZ (nugget zone) were observed and analyzed by mean of optical and scanning electron microscope. The results showed that increasing the rotation speed from 900 to 2280 rpm made grain coarsening in NZ and the mass distribution of the material is more evenly distributed, as well as increased hardness and tensile strength of the joint. The highest values in microhardness in NZ and tensile strength at the join were founded at the speed of 2280 rpm and 1500 rpm which was similar to 2280 rpm, respectively.
159