[1]
Y. Zhu, Y. Wang, Y. Huang, Failure analysis of a helical compression spring for a heavy vehicle's suspension system, Case Studies in Engineering Failure Analysis, 2 (2014) 169-173.
DOI: 10.1016/j.csefa.2014.08.001
Google Scholar
[2]
Y.S. Kong, S. Abdullah, D. Schramm, M.Z. Omar, S.M. Haris, T. Bruckmann, Mission profiling of road data measurement for coil spring fatigue life, Measurement (2017) 1-36.
DOI: 10.1016/j.measurement.2017.05.011
Google Scholar
[3]
Husaini, T.E. Putra, N. Ali, Fatigue feature clustering of modified automotive strain signals for saving testing time, International Journal of Automotive and Mechanical Engineering (IJAME), 15 (2018) 5251-5272.
DOI: 10.15282/ijame.15.2.2018.8.0405
Google Scholar
[4]
Husaini, T.E. Putra, N. Ali, The Morlet wavelet transform for reducing fatigue testing time of an automotive suspension signal, AIP Conference Proceedings, 1983 (2018).
DOI: 10.1063/1.5046238
Google Scholar
[5]
T.E. Putra, Husaini, Identifying strain signal characteristics of automotive suspension system subjected to road surface vibrations, AIP Conference Proceedings, 1983 (2018).
DOI: 10.1063/1.5046239
Google Scholar
[6]
T.E. Putra, Husaini, Investigating the road surface effect to the fatigue life of an automotive coil spring, IOP Conf. Series: Materials Sciences and Engineering, 352 (2018).
DOI: 10.1088/1757-899x/352/1/012016
Google Scholar
[7]
R. von Mises, Mechanik der festen Körper im plastisch-deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1, (1913) 582-592.
DOI: 10.1007/978-3-662-25046-4_2
Google Scholar
[8]
S. Ilic, Methodology of Evaluation of In-Service Load Applied to the Output Shafts of Automatic Transmissions, Ph.D. Thesis, The University of New South Wales, (2006).
Google Scholar
[9]
L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal, Transactions of the ASME, 76 (1954) 931-950.
DOI: 10.1115/1.4015021
Google Scholar
[10]
S.S. Manson, Fatigue: a complex subject - some simple approximation, Experimental Mechanics, 5 (1965) 193-226.
Google Scholar
[11]
J. Morrow, Fatigue Design Handbook, Society of Automotive Engineers, Warrendale, (1968).
Google Scholar
[12]
K.N. Smith, P. Watson, T.H. Topper, A stress-strain function for the fatigue of materials, Journal of Materials JMLSA, 5 (1970) 767-778.
Google Scholar
[13]
A. Palmgren, Die Lebensdauer von Kugellagern, Zeitschrift VDI, 68 (1924) 339-341.
Google Scholar
[14]
M.A. Miner, Cumulative damage in fatigue, Journal of Applied Mechanics, 67 (1945) A159-A164.
DOI: 10.1115/1.4009458
Google Scholar
[15]
ASTM A322-91, Standard Specification for Steel Bars, Alloy, Standard Grades, ASTM International, West Conshohocken, (2001).
Google Scholar
[16]
T.E. Putra, S. Abdullah, D. Schramm, M.Z. Nuawi, T. Bruckmann, Generating strain signals under consideration of road surface profiles, Mechanical Systems and Signal Processing, 60-61 (2015) 485-497.
DOI: 10.1016/j.ymssp.2015.01.031
Google Scholar
[17]
T.E. Putra, S. Abdullah, D. Schramm, M.Z. Nuawi, T. Bruckmann, Reducing cyclic testing time for components of automotive suspension system utilising the wavelet transform and the Fuzzy C-Means, Mechanical Systems and Signal Processing, 90 (2017) 1-14.
DOI: 10.1016/j.ymssp.2016.12.001
Google Scholar
[18]
T.E. Putra, S. Abdullah, D. Schramm, M.Z. Nuawi, T. Bruckmann, The need to generate realistic strain signals at an automotive coil spring for durability simulation leading to fatigue life assessment, Mechanical Systems and Signal Processing, 94 (2017) 432-447.
DOI: 10.1016/j.ymssp.2017.03.014
Google Scholar
[19]
nCode, GlyphWorks, nCode International, Ltd., Sheffield, (2018).
Google Scholar