Sort by:
Publication Type:
Open access:
Publication Date:
Periodicals:
Search results
Online since: August 2010
Authors: Xiao Cong He
Introduction
Due to the need to design lightweight structures and the increased use of lightweight materials in
different industries, some joining techniques have drawn more attention in recent years because
they can join some advanced materials that are dissimilar, coated and hard to weld [1, 2].
References [1] X.
Fickes: Sci Technol Weld Join, Vol.13, (2008), p. 479 [12] J.
References [1] X.
Fickes: Sci Technol Weld Join, Vol.13, (2008), p. 479 [12] J.
Online since: March 2014
Authors: Zhe Xiao, Zhi Liu, Man Sheng Xiao
TABLE 1.
During the experiments, the authors used these four algorithms respectively to select the feature subsets on each data set in Table 1.
References [1] ZHU Lin.
Journal of Press Control, 2008, 18(5): 479~490
IEEE Trans. on systems, Man and Cybernetics-Part A: System and Humans, 2009, 39(1): 36~46
During the experiments, the authors used these four algorithms respectively to select the feature subsets on each data set in Table 1.
References [1] ZHU Lin.
Journal of Press Control, 2008, 18(5): 479~490
IEEE Trans. on systems, Man and Cybernetics-Part A: System and Humans, 2009, 39(1): 36~46
Online since: August 2011
Authors: Dzuraidah Abd Wahab, Mohd Nizam Ab Rahman, Noor Hidayah Abu, Baba Md Deros
Detail comparison between SMEs and large organization characteristics has been done by researchers and shown in Table 1.
Table 1: Comparison between SMEs and Large Organization Characteristics Organization Characteristic Large organization SMEs Structure Many layers of management level.
The scale ranged from “strongly disagree” (1) to “strongly agree” (5).
References [1] J.D.
Lixiong, IEEE (2000) 1
Table 1: Comparison between SMEs and Large Organization Characteristics Organization Characteristic Large organization SMEs Structure Many layers of management level.
The scale ranged from “strongly disagree” (1) to “strongly agree” (5).
References [1] J.D.
Lixiong, IEEE (2000) 1
Online since: April 2011
Authors: Guo Jun Zhang, Yi Zhao, Bin Li, Rui Hong Wang, Gang Lui, J. Sun
0 5 10 15 20
x = 0
x = 0.4
x = 0.8
x =1
H / m
15 20
(d)
2
q / L
4
6
2
q / L·h-1
·h-1
2
q / L
4
6
2
q / L·h-1
·h-1
2
q / L
4
6
2
q / L·h-1
·h-1
2
q / L
4
6
2
q / L·h-1
·h-1
2
q / L
4
6
2
q / L·h-1
·h-1
2
q / L
4
6
2
q / L·h-1
·h-1
2
q / L
4
6
2
q / L·h-1
·h-1
2
q / L
4
6
2
q / L·h-1
·h-1
Fig.1 Optical micrographs of annealed (a) pure molybdenum, (b) Mo-0.3%La2O3, (c) Mo-0.3%La2O3-0.1%Si and (d)Mo-0.3%La2O3-0.3%Si alloys.
(b) 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 4 6
References [1] R.
Zhai: Materials Science and Engineering A Vol. 479(2008), p. 76 [8] S.
Fig.1 Optical micrographs of annealed (a) pure molybdenum, (b) Mo-0.3%La2O3, (c) Mo-0.3%La2O3-0.1%Si and (d)Mo-0.3%La2O3-0.3%Si alloys.
(b) 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 2 q / L 4 6 2 q / L·h-1 ·h-1 4 6
References [1] R.
Zhai: Materials Science and Engineering A Vol. 479(2008), p. 76 [8] S.
Online since: March 2016
Authors: Jing Yang Chen, Cheng Bo Xiao, Xin Tang, Jie Li, Qing Li
Fig. 1 shows the typical microstructures in the dendrite core of alloys 1 and 2 after standard heat treatment.
The γ′ volume fraction in the dendrite core of alloy 1 was 57.6% after standard heat treatment (Table 1).
(a1) alloy 1, 500 h; (a2) alloy 1, 1000 h; (a3) alloy 1, 2000 h; (b1) alloy 2, 500 h; (b2) alloy 2, 1000 h; (b3) alloy 2, 1500 h.
References [1] R.C.
A. 479(2008) 148-156
The γ′ volume fraction in the dendrite core of alloy 1 was 57.6% after standard heat treatment (Table 1).
(a1) alloy 1, 500 h; (a2) alloy 1, 1000 h; (a3) alloy 1, 2000 h; (b1) alloy 2, 500 h; (b2) alloy 2, 1000 h; (b3) alloy 2, 1500 h.
References [1] R.C.
A. 479(2008) 148-156
Online since: January 2013
Authors: Ming Pan, Shi Kuan Wang, Xian Ling Yuan, Ren You Xie, Yu Cheng Hong, Hui Jie Liu
Experimental design is shown in Table 1.
Pectinase and cellulase, a ratio of 1:2 for the best.
Table 3 Box-Behnken design and results Table 4 Coefficient significance test of regression equation Experimental point A B C Y flavonoid(%) 1 0 1 1 0.8618 2 1 1 0 0.9235 3 1 0 1 0.8183 4 0 -1 1 0.8312 5 -1 1 0 0.9273 6 -1 -1 0 0.9631 7 0 1 -1 0.8064 8 0 0 0 1.1125 9 -1 0 -1 0.7951 10 0 0 0 1.1097 11 1 -1 0 0.8579 12 1 0 -1 0.7611 13 0 -1 -1 0.7568 14 -1 0 1 0.8439 15 0 0 0 1.1186 item coefficient Coefficient standard deviation T P significant constant 1.11360 0.006999 159.108 0.000 ** A -0.02108 0.004286 -4.917 0.004 ** B 0.01375 0.004286 3.208 0.024 * C 0.02947 0.004286 6.877 0.001 ** A*A -0.10255 0.006309 -16.255 0.000 ** B*B -0.09310 0.006309 -14.757 0.000 ** C*C -0.20645 0.006309 -32.724 0.000 ** A*B 0.02535 0.006061 4.182 0.009 ** A*C 0.00210 0.006061 0.346 0.743 B*C -0.00475 0.006061 -0.784 0.469 note:** extremely significant level (P < 0. 01) ; * significant level (P < 0. 05)。
Chemistry, 2005, (68) :1-3
Journal of Jilin University (Engineering Science), 2007,37 (2) :479-483
Pectinase and cellulase, a ratio of 1:2 for the best.
Table 3 Box-Behnken design and results Table 4 Coefficient significance test of regression equation Experimental point A B C Y flavonoid(%) 1 0 1 1 0.8618 2 1 1 0 0.9235 3 1 0 1 0.8183 4 0 -1 1 0.8312 5 -1 1 0 0.9273 6 -1 -1 0 0.9631 7 0 1 -1 0.8064 8 0 0 0 1.1125 9 -1 0 -1 0.7951 10 0 0 0 1.1097 11 1 -1 0 0.8579 12 1 0 -1 0.7611 13 0 -1 -1 0.7568 14 -1 0 1 0.8439 15 0 0 0 1.1186 item coefficient Coefficient standard deviation T P significant constant 1.11360 0.006999 159.108 0.000 ** A -0.02108 0.004286 -4.917 0.004 ** B 0.01375 0.004286 3.208 0.024 * C 0.02947 0.004286 6.877 0.001 ** A*A -0.10255 0.006309 -16.255 0.000 ** B*B -0.09310 0.006309 -14.757 0.000 ** C*C -0.20645 0.006309 -32.724 0.000 ** A*B 0.02535 0.006061 4.182 0.009 ** A*C 0.00210 0.006061 0.346 0.743 B*C -0.00475 0.006061 -0.784 0.469 note:** extremely significant level (P < 0. 01) ; * significant level (P < 0. 05)。
Chemistry, 2005, (68) :1-3
Journal of Jilin University (Engineering Science), 2007,37 (2) :479-483
Online since: May 2014
Authors: Fa Xing LU, Xiao Wei Tang, Bo Wei Zhao
Modeling and Simulation Calculation of a Overwater Autonomous Air Defense Weapon System
Bowei Zhao 1,a, Faxing LU 1,b,Xiaowei Tang 2,c
1College of Electronic Engineering,Naval University,Wuhan 430033,China
2Navy 92730,Sanya 572016,China
azhaoboweinavy@163.com
Keywords: floating platform autonomous air defense weapon accuracy analysis capture probability
Abstract.
How to ensure island security and reinforce island defense has become an issue that requires great attention[1]~[2].
The system’s precision chain derived from this is shown in figure 1.
Table 2 The results of the simulation parameters the first capture probability the final capture probability the time of the capture (s) the base value 0.913 1.000 6.776 =0.1° 0.923 1.000 4.182 =1.5° 0.781 1.000 9.615 =0.1° 0.926 1.000 4.638 =1.5° 0.733 1.000 12.124 =5m 0.913 1.000 6.721 =50m 0.907 1.000 7.733 =5m/s 0.912 1.000 6.770 =20m/s 0.889 1.000 9.762 =1° 0.925 1.000 4.399 =5° 0.850 1.000 7.244 =0.5m 0.915 1.000 5.395 =1.5m 0.914 1.000 5.432 =0.3° 0.961 1.000 4.342 =1.5° 0.766 1.000 9.805 =0.3° 0.928 1.000 9.643 =1.5° 0.558 1.000 19.742 : 0.951 1.000 6.518 : 0.361 1.000 41.877 : 0.913 1.000 7.257 : 0.908 1.000 7.225 : 0.917 1.000 4.037 : 0.916 1.000 7.291 :cm 0.919 1.000 4.306 :cm 0.868 1.000 4.194 : 0.450 1.000 10.121 : 1.000 1.000 2.421 :s 0.894 1.000 6.979 :s 0.890 1.000 4.127 The following conclusions can be got from the results of the simulation: 1) The accuracy of the detection of the sensor has a great influence on the accuracy of the weapon’s strike against the
[6] Hongmei Li: Error Transfer and Sensitivity Analysis of Ship-Borne Radar Detecting Journal of Data Acquisition and Processing, vol.27,no.4, 2012, pp:474-479
How to ensure island security and reinforce island defense has become an issue that requires great attention[1]~[2].
The system’s precision chain derived from this is shown in figure 1.
Table 2 The results of the simulation parameters the first capture probability the final capture probability the time of the capture (s) the base value 0.913 1.000 6.776 =0.1° 0.923 1.000 4.182 =1.5° 0.781 1.000 9.615 =0.1° 0.926 1.000 4.638 =1.5° 0.733 1.000 12.124 =5m 0.913 1.000 6.721 =50m 0.907 1.000 7.733 =5m/s 0.912 1.000 6.770 =20m/s 0.889 1.000 9.762 =1° 0.925 1.000 4.399 =5° 0.850 1.000 7.244 =0.5m 0.915 1.000 5.395 =1.5m 0.914 1.000 5.432 =0.3° 0.961 1.000 4.342 =1.5° 0.766 1.000 9.805 =0.3° 0.928 1.000 9.643 =1.5° 0.558 1.000 19.742 : 0.951 1.000 6.518 : 0.361 1.000 41.877 : 0.913 1.000 7.257 : 0.908 1.000 7.225 : 0.917 1.000 4.037 : 0.916 1.000 7.291 :cm 0.919 1.000 4.306 :cm 0.868 1.000 4.194 : 0.450 1.000 10.121 : 1.000 1.000 2.421 :s 0.894 1.000 6.979 :s 0.890 1.000 4.127 The following conclusions can be got from the results of the simulation: 1) The accuracy of the detection of the sensor has a great influence on the accuracy of the weapon’s strike against the
[6] Hongmei Li: Error Transfer and Sensitivity Analysis of Ship-Borne Radar Detecting Journal of Data Acquisition and Processing, vol.27,no.4, 2012, pp:474-479
Online since: November 2014
Authors: Qing Hua Zou, Li Zhu
The left chart in Fig. 1 is the new-type continuous air-cooling transformation curves[1] of 25 MnCrNiMo type structural steel.
Fig.1.
Fig. 2, 3 and 4 are established based on air-cooling diameters (see Fig. 1).
The oil and water-cooling diameters of X-coordinate in Fig.1 can be called equivalent diameters.
Reference [1] Zou Qinghua, Sheng-zhong Zou, Key program for non-equilibrium phase diagram of Ni 1 type steel, Advanced Materials Research, 2011 International conference on industry, information system and material engineering, IISME2011, Guangzhou, China, April 16- 17, 204-210, (2011) 1357-1361 [2] QH Zou, CB Wang, G Wu, ZG Wang, SZ Zou, New type dynamic phase diagram of the N1 structural steel, The physics of metals and metallography[J].2008,105 (6):622-629.204-210, (2011) 1357-1361 [3] Z.Qing-Hua, C Hong, C Xiao-Dao, New-type dynamical phase diagrams and a nonequilibrium-lever rule for carbon steels[J].The physics of metals and metallography, 2005,100 (5):472-479.
Fig.1.
Fig. 2, 3 and 4 are established based on air-cooling diameters (see Fig. 1).
The oil and water-cooling diameters of X-coordinate in Fig.1 can be called equivalent diameters.
Reference [1] Zou Qinghua, Sheng-zhong Zou, Key program for non-equilibrium phase diagram of Ni 1 type steel, Advanced Materials Research, 2011 International conference on industry, information system and material engineering, IISME2011, Guangzhou, China, April 16- 17, 204-210, (2011) 1357-1361 [2] QH Zou, CB Wang, G Wu, ZG Wang, SZ Zou, New type dynamic phase diagram of the N1 structural steel, The physics of metals and metallography[J].2008,105 (6):622-629.204-210, (2011) 1357-1361 [3] Z.Qing-Hua, C Hong, C Xiao-Dao, New-type dynamical phase diagrams and a nonequilibrium-lever rule for carbon steels[J].The physics of metals and metallography, 2005,100 (5):472-479.
Online since: January 2012
Authors: H. W. Gu, Y.B. Guo, V.P.W. Shim, Xu Li
Shim 1,a, Y.
Guo 1,b, H.
Gu 1,c, X.
(a) (b) Quasi-static, 0.001s-1 Dynamic, 200-300s-1 Dynamic, 200-300s-1 Quasi-static, 0.001s-1 Figure 7.
References [1] Y.
Guo 1,b, H.
Gu 1,c, X.
(a) (b) Quasi-static, 0.001s-1 Dynamic, 200-300s-1 Dynamic, 200-300s-1 Quasi-static, 0.001s-1 Figure 7.
References [1] Y.
Online since: February 2008
Authors: Marco Schikorra, A. Erman Tekkaya, Lorenzo Donati, Luca Tomesani
Schikorra
1, a, L.
Results The complete list of experimental results is shown in table 1.
The difference between these two and geometry 1 and 4 is extreme.
Geometry 4 with the symmetric pocket led to a profile with 3870 mm length (vavarage,4 = 7.68 mm/s) and geometry 1 with the asymmetric pockets led to a profile length of 2870 mm (vavarage,1 = 5.7 mm/s).
References [1] P.
Results The complete list of experimental results is shown in table 1.
The difference between these two and geometry 1 and 4 is extreme.
Geometry 4 with the symmetric pocket led to a profile with 3870 mm length (vavarage,4 = 7.68 mm/s) and geometry 1 with the asymmetric pockets led to a profile length of 2870 mm (vavarage,1 = 5.7 mm/s).
References [1] P.