Search:

  • 479 1=

Search Options

Sort by:

Publication Type:

Open access:

Publication Date:

Periodicals:

Search results

Online since: January 2021
Authors: Xu Dong Yang, Fan Gu, Xin Chen
Introduction Carbon fiber reinforced epoxy composite is a product of high-tech synthesis, has significant characteristics and plays an important role in many fields such as aerospace, sports, and military [1].
Results and Discussion The research on the performance of carbon fiber reinforced epoxy composite bicycle is shown in Fig. 1.
Figure 1.
References [1] I.
Materials Testing. 59 (2017) 472-479.
Online since: August 2012
Authors: Ming Ming Cheng, Fei Wang, Lin Jing Ma, Chao Fan
In all types of foams, the production of polyurethane foam accounts for more than 50%, forming a more solid traditional application field and becoming one of indispensable materials in many areas [1-3].
Foam generates in 1-10s after materials are uniformly mixed and foam generation completes within 0.5 ~ 3 min to get foam products with a high molecular weight and cross linking density in a certain degree.
In all cases only 1 wt. % nanoparticles are used, and have found significant thermal and mechanical properties enhancement of the nanophased foam.
References [1] D.
Jeelani: Materials Science and Engineering: A, Vol. 479(2008), p.213 [20]C.C.
Online since: January 2015
Authors: Cheng Kang Lee
A B C D R AVG STD Car1 Car2 Car3 Car4 … Car7 Car8 1 1 1 1 1 1 0.6 0.03 0.5 … 0.7 0.5 0.4288 0.3558 2 1 1 1 2 0.93 0.43 0.07 0.73 … 0.7 0.73 0.5075 0.3155 3 1 1 2 1 1 1 0 0.93 … 0.3 1 0.7788 0.3970 4 1 1 2 2 1 0.7 0.17 0.9 … 0.9 0.87 0.6050 0.3827 5 1 2 1 1 1 1 0.03 11 1 0.6413 0.4959 6 1 2 1 2 1 0.63 0.23 0.97 … 1 0.77 0.6175 0.3800 7 1 2 2 1 1 0.77 0.03 11 1 0.7288 0.4385 8 1 2 2 2 1 0.8 0.2 0.97 … 0.97 0.97 0.6813 0.3695 9 2 1 1 1 1 1 0 11 1 0.7588 0.4471 10 2 1 1 2 1 0.47 0.03 0.73 … 0.9 0.87 0.5250 0.4047 11 2 1 2 1 1 0.1 0 0.8 … 1 1 0.5163 0.4737 12 2 1 2 2 1 0.77 0.2 0.8 … 0.9 0.9 0.6300 0.3457 13 2 2 1 1 1 1 0.03 11 1 0.6288 0.5125 14 2 2 1 2 1 0.8 0.23 0.9 … 0.97 0.97 0.6888 0.3380 15 2 2 2 1 1 1 0.57 11 1 0.7925 0.2984 16 2 2 2 2 1 0.77 0.13 0.93 … 0.97 0.93 0.6875 0.3427 17 3 1 1 1 1 0.03 0.17 11 1 0.6625 0.4673 18 3 1 1 2 1 0.57 0.13 0.67 … 0.73 0.67 0.5288 0.3075 19 3 1 2 1 1 0 1 11 1 0.7838 0.4069 20 3 1 2 2 1 0.63 0.2 0.83 … 1 0.73 0.6075 0.3491 21 3 2
1 1 1 1 1 11 0.63 0.8663 0.2629 22 3 2 1 2 1 0.9 0.1 0.97 … 0.97 0.87 0.6813 0.3695 23 3 2 2 1 1 1 0.03 11 1 0.7413 0.3919 24 3 2 2 2 1 0.87 0.2 0.97 … 1 1 0.7050 0.3671 25 4 1 1 1 1 1 0.13 11 1 0.6625 0.4682 26 4 1 1 2 1 0.5 0.07 0.8 … 0.8 0.77 0.5300 0.3661 27 4 1 2 1 1 0.1 1 11 1 0.6413 0.4959 28 4 1 2 2 1 0.6 0.23 0.9 … 0.93 0.87 0.6200 0.3538 29 4 2 1 1 1 1 0 11 1 0.6288 0.5125 30 4 2 1 2 1 0.87 0.13 0.93 … 1 0.9 0.6913 0.3529 31 4 2 2 1 1 1 0.47 11 1 0.9338 0.1874 32 4 2 2 2 1 0.8 0.2 11 1 0.6963 0.3739 Table 3 Result of ANOVA for AVG Source DF SS MS F P Significance result A 3 0.023651 0.007884 1.18 0.336 Not significant B 1 0.082393 0.082393 12.38 0.002** Very significant C 1 0.037898 0.037898 5.7 0.025* Significant D 1 0.044346 0.044346 6.66 0.016* Significant Error 25 0.166366 0.006655 Table 4 Result of ANOVA for STD Source DF SS MS F P Significance result A 3 0.004464 0.001488 0.28 0.838 Not significant B 1 0.003687 0.003687 0.7 0.411 Not significant
According to the results obtained herein, the following conclusions are drawn: 1.
References [1] R.
Maroto: A comprehensive review and evaluation of permutation flowshop heuristics, European Journal of Operational Research, Vol. 165 (2005), pp. 479-494
Online since: June 2008
Authors: Fernando Barbadillo, Ramón Artiaga, José Luís Mier, Salvador Naya, Ricardo Cao, A. Fuentes
Mier 1,e and R.
Table 1.
Reaction order Johnson-Mehl-Avrami Sestak-Berggren β Ti Tf Ea n ln(A) Ea n m ln(A) Ea n m p ln(A) LC1 309 437 93 1,56 11,1 46 1,45 0,48 2,48 5 1,32 0,96 -0,32 -5 LC2 59 495 0 0,00 -14,7 0 0,00 0,00 -14,68 0 0,00 0,00 0,00 -15 LC3 325 354 466 2,02 87,3 310 1,80 0,32 56,60 -12 1,30 1,04 -0,30 -7 LC4 297 342 276 1,90 51,1 97 1,55 0,62 14,83 31 1,39 0,89 -0,21 1 05 º[C/min] LC5 370 405 440 1,90 75,6 315 1,75 0,27 52,70 136 1,50 0,70 -0,18 20 LC1 386 423 429 1,91 72,2 486 1,98 -0,13 82,25 53 1,39 0,89 -0,27 6 LC2 23 30 0 1,00 -13,6 0 1,00 0,00 -13,64 0 1,00 0,00 0,00 -14 LC3 326 449 101 1,58 13,1 64 1,49 0,36 6,28 15 1,34 0,88 -0,29 -2 LC4 308 366 224 1,90 39,8 144 1,71 0,34 24,01 -83 1,10 1,40 -0,45 -21 10 [ºC/min] LC5 344 378 423 1,99 76,5 196 1,65 0,52 33,32 -58 1,23 1,16 -0,36 -15 LC1 351 401 314 2,04 54,9 158 1,70 0,48 26,00 -44 1,22 1,16 -0,33 -11 LC2 347 489 91 1,46 10,9 55 1,40 0,38 4,69 -8 1,21 1,13 -0,51 -6 LC3 39 502 0 0,00 -14,7 0 0,00 0,00 -14,73
0 0,00 0,00 0,00 -15 LC4 318 382 203 1,83 35,5 96 1,58 0,51 14,72 62 1,49 0,69 -0,11 8 20 [ºC/min] LC5 402 438 470 1,95 78,5 287 1,72 0,37 46,64 7 1,33 1,00 -0,29 -2 LC1 24 42 0 1,00 -16,4 0 1,00 0,00 -16,44 0 1,00 0,00 0,00 -16 LC2 349 465 118 1,63 16,6 11 1,39 0,87 -2,21 7 1,34 0,96 -0,29 -3 LC3 360 403 370 2,11 65,2 237 1,84 0,35 40,59 50 1,43 0,88 -0,23 6 LC4 320 376 224 1,77 39,8 120 1,58 0,45 19,81 39 1,40 0,84 -0,24 4 A I R 25 [ºC/min] LC5 400 443 392 1,87 64,7 63 1,44 0,81 7,80 -35 1,26 1,13 -0,43 -9 Reaction order Johnson-Mehl-Avrami Sestak-Berggren β Ti Tf Ea n ln(A) Ea n m ln(A) Ea n m p ln(A) LC1 303 356 224 1.84 39.8 142 1.66 0.35 23.39 61 1.45 0.76 -0.29 7 LC2 322 360 327 1.83 59.3 243 1.71 0.25 42.83 -2 1.32 1.02 -0.30 -5 LC3 479 546 178 0.68 20.6 -377 1.03 2.66 -62.20 251 0.35 0.01 -1.91 32 LC4 59 478 0 0.23 -9.6 -2 0.25 0.16 -9.96 4 0.06 -0.10 -1.11 -8 05 [ºC/min] LC5 345 420 172 1.65 25.9 -8 1.35 1.00 -6.85 -1 1.32 1.02 -0-30
-5 LC1 372 428 203 1.38 31.2 15 1,36 0,89 -1.67 -3 1,32 1,03 -0,30 -5 LC2 520 548 565 1.13 79.6 -572 0,90 1,77 -88.87 54 0,87 1,00 -1,10 4 LC3 327 378 260 1.83 45.8 4 1,37 0,95 -3.50 5 1,33 1,00 -0,30 -3 LC4 314 398 158 1.87 25.6 13 1,40 0,88 -2.25 -1 1,32 1,03 -0,30 -5 10 [ºC/min] LC5 421 542 91 0.53 7.6 -151 0,84 2,29 -29.12 21 0,43 0,88 -1,19 -2 LC1 486 548 177 0.34 20.7 -305 0,98 2,37 -50.20 -93 0,58 1,46 -0,72 -19 LC2 55 499 0 0.00 -12.7 0 0,00 0,00 -12.67 0 0,00 0,00 0,00 -13 LC3 339 392 266 1.91 46.4 203 1,78 0,23 34.42 -33 1,25 1,14 -0,32 -10 LC4 320 390 197 1.95 33.8 11 1,40 0,91 -1.88 35 1,43 0,85 -0,30 3 15 [ºC/min] LC5 364 437 160 1.40 23.8 63 1,38 0,59 6.73 17 1,34 0,90 -0,23 -1 LC1 355 409 299 2.00 51.6 36 1,44 0,85 3.21 8 1,34 0,99 -0,27 -2 LC2 325 377 265 1.93 47.7 96 1,57 0,61 15.10 25 1,38 0,93 -0,28 1 LC3 341 508 59 0.98 4.5 21 1,09 0,59 -1.62 6 1,03 0,96 -0,75 -4 LC4 412 445 384 1.41 62.2 108 1,37 0,69 15.29 2 1,32 1,01 -0,30 -3 20
Online since: June 2008
Authors: Ming Fei Feng, Bing Yang, Yong Xiang Zhao, Y. Li, M.J. Liu, Guo Xiang Song
Forman model Δ 1.E-10 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00 0 500 1000 Test data The present model Elber model 100 102 104 106 Δ K [MPa·mm1/2] da/dN [mm·cycle -1] (1-R)KIC ↑ Δ c.
Elber model 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00 0 500 1000 Test data The present model Paris model 100 10-2 10-4 10-6 10-8 Δ K [MPa·mm1/2] da/dN [mm·cycle -1] (1-R)KIC↑ Δ Kth a.
Semi-elliptical crack Fig. 5 Crack models r a 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00 0 500 1000 Test data Average curve 100 10-2 10-4 10-6 10-8 Δ K [MPa·mm 1/2 ] da/dN [mm·cycle-1 ] (1-R)KIC↑ Δ Kth P=0.9999 P=0.999 P=0.99 P=0.9 b.
C=95% 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00 0 500 1000 Test data Average curve 100 10-2 10-4 10-6 10-8 Δ K [MPa·mm 1/2 ] da/dN [mm·cycle-1] (1-R)KIC ↑ ∆Kth P=0.001 P=0.01 P=0.1 P=0.9 P=0.99 P=0.999 a.
Summary 1.
Online since: August 2004
Authors: Pascal Berger, L. Lavisse, C. Langlade, D. Grevey, A.B. Vannes
Lavisse 1 , C.
Grevey 1 and A.B.
Fig. 1.
Oxidation states of titanium and oxygen identify with XPS and Auger analyses Colour Untreated Uncoloured Yellow Blue Ti II % 5 10 15 0 Ti III % 5 25 20 25 Ti IV % 90 70 65 75 O 2 % 65 90 80 85 OH % 35 10 20 15 R 0.5 0.5 0.70 0.5 XPS global sur du titane poli par électrochimie 0 50 100 150 200 250 300 350 1 1 99 1 1 83 1 1 66 1 1 49 1 1 32 1 1 15 1 0 98 1 0 82 1 0 65 1 0 48 1 0 31 1 0 14 9 98 9 81 9 64 9 47 9 30 9 14 8 97 8 80 8 63 8 46 8 30 8 13 7 96 7 79 7 62 Energie de liaison C p s C1s O 1s Ti2p 531 460 285 El(eV) 458,8 XPS sur une couche jaune [Ti(2p)] 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 485 484 483 482 481 480 479 478 477 476 475 475 474 473 472 471 470 469 468 467 466 465 464 463 462 461 460 459 458 457 456 456 455 454 453 452 451 Energie de liaison (eV) C ps Ti 2p1/2 Ti 2p3/2 Ti 2+ Ti 3 + Ti 4+ 1,7 3,4
NRA analysis of a purple layer I (Cps) Channel number 0 50 100 150 200 250 300 350 400 450 500 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 A B 1 4 N ( d, αααα) 1 2 C 1 4 N ( d,p 0 ) 1 5 N 1 4 N ( d,p 1 , 2 ) 1 5 N 1 2 C ( d,p 0 ) 1 3 C 1 6 O( d,p 0 ) 1 7 O 1 6 O( d,p 1 ) 1 7 O 1 4 N( d, p 5 ) 1 5 N O deep?
Online since: June 2013
Authors: Ivaylo N. Vladimirov, Stefanie Reese, Tim Brepols
Furthermore, by assuming that the skew-symmetric part of the plastic velocity gradient lp = ˙FpF−1 p vanishes, i. e. wp = 1 2(lp − lTp) = 0, and that a dissipation potential Ξ = Φ + 1 2 b cχ · χ exists, the following flow rule and evolution equations for the inner variables can be derived (see [2]), viz.
The process parameters and the dimensions of the tools were taken from [13] and are given in Table 1.
References [1] J.
International Journal of Plasticity, 15(5):479--520, 1999
International Journal for Numerical Methods in Engineering, 17(1):15--41, 1981
Online since: August 2012
Authors: Hua Xin, Xu Feng Wang, Joshua Qing Song Li
The measured refractive indices of the pure liquids were compared with published values in Table 1.
Dy = (1/N)∣ycal - yexp∣.
DT = (1/N)∣Tcal - Texp∣.
References [1] S.
Data. 479 (2002) 1324-1329
Online since: May 2015
Authors: Michael Heinrich, Ricardo Decker, Joerg Schaufuss, Juergen Troeltzsch, Jan Mehner, Lothar Kroll
The shear rate ranges from approximately 90 s-1 to 1280 s-1.
The test current was 1 mA.
Therefore, the optimal mixture ratio CNT:CB shifts from 1:1 to 2:1.
The optimal mixture ratio CNT:CB shifts from 1:1 to 1:2 within the total filling level of 4% to 6%.
Bd: 34. (2009), Nr. 6, S. 479–515
Online since: August 2021
Authors: Mohd Fadzil Arshad, Hazrina Mansor, Fauziah Aziz
The properties of materials used in these studies are as shown in Table 1 and Figure 1.
Table 1.
References [1] H.
Res., vol. 2, no. 1, pp. 63–76, 2013
Available: http://www.issres.net/journal/ index.php/crl/article/view/479/272
Showing 2381 to 2390 of 3012 items