Review on Weldability Prospects of Super Austenitic Stainless Steels

Article Preview

Abstract:

Super Austenitic Stainless Steels (SASS) belongs to the category of austenitic stainless steels which were known for their excellent corrosion resistance when used in structural applications like desalination plants, oil piping systems, heat exchanger equipments which demands high temperature service and harsh environments. Several works on SASS dealt about the corrosion resistance of the material in its normal base metal form. But structural uses needs SASS to be welded with similar or dissimilar materials to fit into the applications. This study aims to present a detailed view on issues related to the weldability of super austenitic stainless steels and the future scope of welding on SASS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-43

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Prabhat K. Rai, S. Shekhar, K. Yagi, K. Ameyamac, K. Mondal. Fretting wear mechanism for harmonic, non-harmonic and conventional 316L stainless steels. Wear. 2019 ; 424–425 : 23–32.

DOI: 10.1016/j.wear.2019.02.005

Google Scholar

[2] Lu Yang, Yao Cui, Xuan Wei, Mengyue Li , Youzhen Zhang, Strength of duplex stainless steel fillet welded connections. Journal of Constructional Steel Research. 2019; 152 :246-52.

DOI: 10.1016/j.jcsr.2018.08.031

Google Scholar

[3] Hao Fu, Jiawei Min, Hongshan Zhao, Yulai Xua, Pengfei Hu. Improved mechanical properties of aluminum modified ultra-pure 429 ferritic stainless steels after welding.Materials Science & Engineering. 2019: A749; 210–17.

DOI: 10.1016/j.msea.2019.01.106

Google Scholar

[4] A. Dalmau, C. Richard b, A. Igual – Munoz. Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal. Tribology International. 2018; 121 :167–79.

DOI: 10.1016/j.triboint.2018.01.036

Google Scholar

[5] Castro R and De Cadenet JJ. Welding metallurgy of stainless steels and heat resistant steels. London: Cambridge university press; (1974).

Google Scholar

[6] [6] Fisher. G.J and Maciag R.J. Handbook of stainless steels. Newyork: Mcgraw hill; (1977).

Google Scholar

[7] Ming Song, Kaishu Guan. Failure analysis of a weld-decayed austenitic stainless steel. Engineering Failure Analysis. 2011; 18: 1613–18.

DOI: 10.1016/j.engfailanal.2011.05.019

Google Scholar

[8] Ahmad Ivan Karayan, Homero Castaneda, Weld decay failure of a UNS S31603 stainless steel storage tank, Engineering Failure Analysis.2014; 44 :351–62.

DOI: 10.1016/j.engfailanal.2014.05.008

Google Scholar

[9] Chawla KK, Rigsbee JM, Woodhouse JB. Hydrogen-induced cracking in two line pipe steels. J Mater Sci. 1984 ; 21(11):3777–82.

DOI: 10.1007/bf02431612

Google Scholar

[10] Jha AK, Manwatkar Sushant S, Sreekumar K. Hydrogen-induced intergranular stress corrosion cracking (HI-IGSCC) of 0.35C–3.5Ni-1.5Cr-0.5Mo steel fastener. Eng Fail Anal. 2010 ;17(4):777– 86.

DOI: 10.1016/j.engfailanal.2009.10.007

Google Scholar

[11] [11]Watkins, S. P. The Corrosion Resistance of Free Machining Stainless Steel. Metal Prog. 39, (1941).

Google Scholar

[12] Krivobok, V. N. and Grossmann, M. A. Influence of Nickel on the Chromium-iron-carbon Constitutional Diagram. Trans. Am. Soc. Steel Treat., 1930:18 ;808-36.

Google Scholar

[13] . Uhlig, H. H. Some Unexpected Properties of 18 and 8 Chromium. Nickel Steel. Metals and Alloys. 1939:10:234-42.

Google Scholar

[14] Xuehan Wang, Zhile Yang, Zheng Wang , Qiaoying Shi. The influence of copper on the stress corrosion cracking of 304 stainless steel.Applied Surface Science.2019: 478 ; 492–98.

DOI: 10.1016/j.apsusc.2019.01.291

Google Scholar

[15] Tomoyuki Fujii, Keiichiro Tohgo, Yota Mori, Yutaro Miuara. Crystallographic and mechanical investigation of intergranular stress corrosion crack initiation in austenitic stainless steel. Materials Science & Engineering A.2019: 751; 160–70.

DOI: 10.1016/j.msea.2019.02.069

Google Scholar

[16] Youwei Xu, Hongyang Jing, Lianyong Xu. Stress corrosion cracking characteristics of CF8A austenitic stainless steels and interactions between multiple cracks in a simulated PWR environment. Construction and Building Materials. 2019: 203; 642–54.

DOI: 10.1016/j.conbuildmat.2019.01.090

Google Scholar

[17] Huabing Li, Chuntian Yang, Enze Zhou, Chunguang Yang. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm. Journal of Materials Science & Technology.2017: 33; 1596–03.

DOI: 10.1016/j.jmst.2017.03.002

Google Scholar

[18] Yansen Hao, Guangming Cao, Chenggang Li, Jian Li. The aging precipitation behavior of 20Cr-24Ni-6Mo super-austenitic stainless steel processed by conventional casting and twin-roll strip casting. Materials Characterization.2019: 147 ; 21–30.

DOI: 10.1016/j.matchar.2018.10.015

Google Scholar

[19] James D. Fritz, Ronald J. Gerlock. Chloride stress corrosion cracking resistance of 6% Mo stainless steel alloy (UNS N08367). Desalination.2001: 135; 93-97.

DOI: 10.1016/s0011-9164(01)00142-4

Google Scholar

[20] M. Vinoth Kumar, V. Balasubramanian, S. Rajakumar, Shaju K. Albert. Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints. Defence Technology. 2015: 11 ;282-91.

DOI: 10.1016/j.dt.2015.05.009

Google Scholar

[21] A.C. Lewis, J.F. Bingert, D.J. Rowenhorst , A. Gupta , A.B. Geltmacher , G. Spanos .Two-and three-dimensional microstructural characterization of a super-austenitic stainless steel, Materials Science and Engineering A.2006: 418 ;11–18.

DOI: 10.1016/j.msea.2005.09.088

Google Scholar

[22] J. N. Dupont, S. W. Banovic, And A. R. Marder. Microstructural Evolution and Weldability of Dissimilar Welds between a Super Austenitic Stainless Steel and Nickel-Based Alloys. Welding Journal.2003; 125-35.

DOI: 10.1179/136217102225006804

Google Scholar

[23] Brian Metrovich, John W. Fisher, Ben T. Yen, Eric J. Kaufmann, Xiaohua Cheng, Zuozhang Ma. Fatigue strength of welded AL-6XN superaustenitic stainless steel. International Journal of Fatigue.2003: 25; 1309–315.

DOI: 10.1016/s0142-1123(03)00123-3

Google Scholar

[24] Roberto Briones Flores, Alberto Ruíz, Carlos Rubio-González, Victor H. López , Noemí Ortiz Lara, Rafael García Hernández, Francisco F. Curiel López . Effect of heat input and accumulated fatigue damage on mechanical properties of dissimilar AL-6XN/316L welded joints. Materials Characterization.2016: 112; 41–50.

DOI: 10.1016/j.matchar.2015.11.029

Google Scholar

[25] Xiaohua Cheng, John W. Fisher, Henry J. Prask, Thomas Gna¨upel-Herold, Ben T. Yen. Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures, International Journal of Fatigue.2003: 25; 1259–269.

DOI: 10.1016/j.ijfatigue.2003.08.020

Google Scholar

[26] S.W. Banovic, J.N. Dupont, and A.R. Marder. Dilution Control in Gas-Tungsten-Arc Welds Involving Super austenitic Stainless Steels and Nickel-Based Alloys. Metallurgical And Materials Transactions B.2001: 32B ;1171-177.

DOI: 10.1007/s11663-001-0104-9

Google Scholar

[27] P. Sathiya, Mahendra Kumar Mishra, R. Soundararajan. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel. Optics & Laser Technology. 2013: 45; 46–5.

DOI: 10.1016/j.optlastec.2012.07.035

Google Scholar

[28] K. Devendranath Ramkumar, Aditya Chandrasekhar, Anubhav Srivastava, Hidad Preyas, Sanskar Chandra, Sidharth Dev, N. Arivazhagan. Effects of filler metals on the segregation, mechanical properties and hot corrosion behaviour of pulsed current gas tungsten arc welded super-austenitic stainless steel. Journal of Manufacturing Processes. 2016: 24; 46–61.

DOI: 10.1016/j.jmapro.2016.07.006

Google Scholar