[1]
Prabhat K. Rai, S. Shekhar, K. Yagi, K. Ameyamac, K. Mondal. Fretting wear mechanism for harmonic, non-harmonic and conventional 316L stainless steels. Wear. 2019 ; 424–425 : 23–32.
DOI: 10.1016/j.wear.2019.02.005
Google Scholar
[2]
Lu Yang, Yao Cui, Xuan Wei, Mengyue Li , Youzhen Zhang, Strength of duplex stainless steel fillet welded connections. Journal of Constructional Steel Research. 2019; 152 :246-52.
DOI: 10.1016/j.jcsr.2018.08.031
Google Scholar
[3]
Hao Fu, Jiawei Min, Hongshan Zhao, Yulai Xua, Pengfei Hu. Improved mechanical properties of aluminum modified ultra-pure 429 ferritic stainless steels after welding.Materials Science & Engineering. 2019: A749; 210–17.
DOI: 10.1016/j.msea.2019.01.106
Google Scholar
[4]
A. Dalmau, C. Richard b, A. Igual – Munoz. Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal. Tribology International. 2018; 121 :167–79.
DOI: 10.1016/j.triboint.2018.01.036
Google Scholar
[5]
Castro R and De Cadenet JJ. Welding metallurgy of stainless steels and heat resistant steels. London: Cambridge university press; (1974).
Google Scholar
[6]
[6] Fisher. G.J and Maciag R.J. Handbook of stainless steels. Newyork: Mcgraw hill; (1977).
Google Scholar
[7]
Ming Song, Kaishu Guan. Failure analysis of a weld-decayed austenitic stainless steel. Engineering Failure Analysis. 2011; 18: 1613–18.
DOI: 10.1016/j.engfailanal.2011.05.019
Google Scholar
[8]
Ahmad Ivan Karayan, Homero Castaneda, Weld decay failure of a UNS S31603 stainless steel storage tank, Engineering Failure Analysis.2014; 44 :351–62.
DOI: 10.1016/j.engfailanal.2014.05.008
Google Scholar
[9]
Chawla KK, Rigsbee JM, Woodhouse JB. Hydrogen-induced cracking in two line pipe steels. J Mater Sci. 1984 ; 21(11):3777–82.
DOI: 10.1007/bf02431612
Google Scholar
[10]
Jha AK, Manwatkar Sushant S, Sreekumar K. Hydrogen-induced intergranular stress corrosion cracking (HI-IGSCC) of 0.35C–3.5Ni-1.5Cr-0.5Mo steel fastener. Eng Fail Anal. 2010 ;17(4):777– 86.
DOI: 10.1016/j.engfailanal.2009.10.007
Google Scholar
[11]
[11]Watkins, S. P. The Corrosion Resistance of Free Machining Stainless Steel. Metal Prog. 39, (1941).
Google Scholar
[12]
Krivobok, V. N. and Grossmann, M. A. Influence of Nickel on the Chromium-iron-carbon Constitutional Diagram. Trans. Am. Soc. Steel Treat., 1930:18 ;808-36.
Google Scholar
[13]
. Uhlig, H. H. Some Unexpected Properties of 18 and 8 Chromium. Nickel Steel. Metals and Alloys. 1939:10:234-42.
Google Scholar
[14]
Xuehan Wang, Zhile Yang, Zheng Wang , Qiaoying Shi. The influence of copper on the stress corrosion cracking of 304 stainless steel.Applied Surface Science.2019: 478 ; 492–98.
DOI: 10.1016/j.apsusc.2019.01.291
Google Scholar
[15]
Tomoyuki Fujii, Keiichiro Tohgo, Yota Mori, Yutaro Miuara. Crystallographic and mechanical investigation of intergranular stress corrosion crack initiation in austenitic stainless steel. Materials Science & Engineering A.2019: 751; 160–70.
DOI: 10.1016/j.msea.2019.02.069
Google Scholar
[16]
Youwei Xu, Hongyang Jing, Lianyong Xu. Stress corrosion cracking characteristics of CF8A austenitic stainless steels and interactions between multiple cracks in a simulated PWR environment. Construction and Building Materials. 2019: 203; 642–54.
DOI: 10.1016/j.conbuildmat.2019.01.090
Google Scholar
[17]
Huabing Li, Chuntian Yang, Enze Zhou, Chunguang Yang. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm. Journal of Materials Science & Technology.2017: 33; 1596–03.
DOI: 10.1016/j.jmst.2017.03.002
Google Scholar
[18]
Yansen Hao, Guangming Cao, Chenggang Li, Jian Li. The aging precipitation behavior of 20Cr-24Ni-6Mo super-austenitic stainless steel processed by conventional casting and twin-roll strip casting. Materials Characterization.2019: 147 ; 21–30.
DOI: 10.1016/j.matchar.2018.10.015
Google Scholar
[19]
James D. Fritz, Ronald J. Gerlock. Chloride stress corrosion cracking resistance of 6% Mo stainless steel alloy (UNS N08367). Desalination.2001: 135; 93-97.
DOI: 10.1016/s0011-9164(01)00142-4
Google Scholar
[20]
M. Vinoth Kumar, V. Balasubramanian, S. Rajakumar, Shaju K. Albert. Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints. Defence Technology. 2015: 11 ;282-91.
DOI: 10.1016/j.dt.2015.05.009
Google Scholar
[21]
A.C. Lewis, J.F. Bingert, D.J. Rowenhorst , A. Gupta , A.B. Geltmacher , G. Spanos .Two-and three-dimensional microstructural characterization of a super-austenitic stainless steel, Materials Science and Engineering A.2006: 418 ;11–18.
DOI: 10.1016/j.msea.2005.09.088
Google Scholar
[22]
J. N. Dupont, S. W. Banovic, And A. R. Marder. Microstructural Evolution and Weldability of Dissimilar Welds between a Super Austenitic Stainless Steel and Nickel-Based Alloys. Welding Journal.2003; 125-35.
DOI: 10.1179/136217102225006804
Google Scholar
[23]
Brian Metrovich, John W. Fisher, Ben T. Yen, Eric J. Kaufmann, Xiaohua Cheng, Zuozhang Ma. Fatigue strength of welded AL-6XN superaustenitic stainless steel. International Journal of Fatigue.2003: 25; 1309–315.
DOI: 10.1016/s0142-1123(03)00123-3
Google Scholar
[24]
Roberto Briones Flores, Alberto Ruíz, Carlos Rubio-González, Victor H. López , Noemí Ortiz Lara, Rafael García Hernández, Francisco F. Curiel López . Effect of heat input and accumulated fatigue damage on mechanical properties of dissimilar AL-6XN/316L welded joints. Materials Characterization.2016: 112; 41–50.
DOI: 10.1016/j.matchar.2015.11.029
Google Scholar
[25]
Xiaohua Cheng, John W. Fisher, Henry J. Prask, Thomas Gna¨upel-Herold, Ben T. Yen. Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures, International Journal of Fatigue.2003: 25; 1259–269.
DOI: 10.1016/j.ijfatigue.2003.08.020
Google Scholar
[26]
S.W. Banovic, J.N. Dupont, and A.R. Marder. Dilution Control in Gas-Tungsten-Arc Welds Involving Super austenitic Stainless Steels and Nickel-Based Alloys. Metallurgical And Materials Transactions B.2001: 32B ;1171-177.
DOI: 10.1007/s11663-001-0104-9
Google Scholar
[27]
P. Sathiya, Mahendra Kumar Mishra, R. Soundararajan. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel. Optics & Laser Technology. 2013: 45; 46–5.
DOI: 10.1016/j.optlastec.2012.07.035
Google Scholar
[28]
K. Devendranath Ramkumar, Aditya Chandrasekhar, Anubhav Srivastava, Hidad Preyas, Sanskar Chandra, Sidharth Dev, N. Arivazhagan. Effects of filler metals on the segregation, mechanical properties and hot corrosion behaviour of pulsed current gas tungsten arc welded super-austenitic stainless steel. Journal of Manufacturing Processes. 2016: 24; 46–61.
DOI: 10.1016/j.jmapro.2016.07.006
Google Scholar