Investigation of Defect InP(001) Surface by Low Energy Ion Scаttering Spectroscopy

Article Preview

Abstract:

In this paper presents the computer simulation results on the investigations of the ion scattering processe on the defect InP(001)<110>,<ī10> surface under low-energy grazing ion bombardment have been presented. The peculiarities trajectories of the scattered ions from surface defect, atomic chain and semichannel have been investigated by computer simulation. It was found some trajectories nearby surface atomic chain which have loop shape and a line form. At grazing ion incidence, from a correlation of the experimental and calculated energy distributions of the scattered particles, one may determine a spatial extension of the missing atom on the monocrystal surface damaged by the ion bombardment.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1049)

Pages:

192-197

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. F. Umarov, A.A. Dzhurakhalov, K.M. Mukashev, IOP Conference Series: Materials Science and Engineering, 81 (2015) 012022.

Google Scholar

[2] M.K. Karimov, U.O. Kutliev, K.U. Otaboeva, M.U. Otaboev, Journal of Nano- and Electronic Physics 12 (2020) 05032 3.

Google Scholar

[3] U.O. Kutliev, M.K. Karimov, F.O. Kuryozov, K.U. Otabaeva, Journal of Physics: Conference Series 1889 (2021) 022063.

DOI: 10.1088/1742-6596/1889/2/022063

Google Scholar

[4] U.O. Kutliev, M.K. Karimov, M.U. Otaboev, Inorganic Materials: Applied Research. 11 (2020) 503-506.

Google Scholar

[5] D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev, Technical Physics Letters. 46 (2020) 235-238.

Google Scholar

[6] E.Yu. Brailovskii, L.A. Matveeva, G.N. Semenova, L.S. Khazan, Yu.A. Tkhorik, Phys. Stat. Sol. (A). 66 (1981) 59-62.

DOI: 10.1002/pssa.2210660163

Google Scholar

[7] B.Ganjipour, J.Wallentin, M.T. Borgström, L.Samuelson, C.Thelander, ACS Nano, 6 (2012) 3109–3113.

DOI: 10.1021/nn204838m

Google Scholar

[8] S.A. Grusha, L.S. Khazan, R.V. Konakova, Š.Lányi, V.V. Milenin, V.Nádaždy, A.A. Naumovets, B.A. Nesterenko, Yu.A.Tkhorik, Thin Solid Films, 215 (1992) 50-51.

DOI: 10.1016/0040-6090(92)90699-c

Google Scholar

[9] N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, O.S. Litvin, P.M. Litvin, V.V. Milenin, Semiconductors, 38 (2014) 737–741.

DOI: 10.1134/1.1777591

Google Scholar

[10] Yu. Breza, M. Kadlecikova, J. Liday, I.Yu. Il'in, R.V. Konakova, V.V. Milenin, I.V. Prokopenko, Yu.A. Tkhorik, L.S. Khazan, Funktional materials, 3 (1996)12-25.

Google Scholar

[11] M.K. Karimov, U.O. Kutliev, Sh.K. Ismailov, M.U. Otaboev, Surface e-Journal of Surface Science and Nanotechnology. 18, (2020)164-167.

Google Scholar

[12] J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids, NY: Pergamon Press: (1985).

Google Scholar

[13] L. M. Kishinevsky, Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya. 26, 1410 (1962).

Google Scholar

[14] E.S. Mashkova, V. Molchanov, Medium-Energy Ion Reflection from Solids, Amsterdam: North-Holland, (1985).

Google Scholar