[1]
European Commission - EUR 21350, Biomass - Green energy for Europe, Luxembourg: Office for Official Publications of the European Communities 2005, ISBN 92-894-8466-7.
Google Scholar
[2]
B. Antizan-Ladislao, J.L. Turrion-Gomez, Second-generation biofuels and local bioenergy systems, Biofuels, Bioprod. Bioref. 2 (2008) 455–469.
DOI: 10.1002/bbb.97
Google Scholar
[3]
C. Mateescu, I. Constantinescu, Increasing the efficiency of biogas plants by improving the methane potential of vegetal biomass, Symposium of The impact of Acquis Communitaire on the equipment and environmental technologies, Agigea, 26-28th of August (2009).
Google Scholar
[4]
R. Braun, P. Weiland, A. Wellinger, Biogas from energy crop digestion, IEA Bionergy Task 37 – Energy from Biogas and Landfill Gas (2008).
Google Scholar
[5]
H. Menzi, Manure management in Europe: results of a recent survey, In: Proceedings of the 10th Conference of the FAO/ESCORENA Network on Recycling Agricultural, Municipal and Industrial Residues in Agriculture (RAMIRAN), 14–18 May, Strbske Pleso, Slovak Republic (2002).
Google Scholar
[6]
T. Al Seadi, D. Rutz, H. Prassl, M. Köttner, T. Finsterwalder, S. Volk, R. Janssen, Biogas – Handbook, University of Southern Denmark (2008) 7-19.
Google Scholar
[7]
A. Converti, R.P.S. Oliveira, B.R. Torres, A. Lodi, M. Zilli, Biogas production and valorization by means of a two-step biological process, Bioresource Technology 100 (2009) 5771–5776.
DOI: 10.1016/j.biortech.2009.05.072
Google Scholar
[8]
K.C. Surendra, D. Takara, A. G. Hashimoto, S. K. Khanal, Biogas as a sustainable energy source for developing countries: Opportunities and challenges, Renewable and Sustainable Energy Reviews 31 (2014) 846–859.
DOI: 10.1016/j.rser.2013.12.015
Google Scholar
[9]
Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Dir. 2001/77/EC and 2003/30/EC, Official Journal of the European Union L 140/16 (2009).
DOI: 10.1017/cbo9780511664885.044
Google Scholar
[10]
S.K. Khanal, Anaerobic biotechnology for bioenergy production: principles and applications, United States: John Wiley & Sons, Inc. (2008).
Google Scholar
[11]
B. K. Ahring, Perspectives for Anaerobic Digestion, Advances in Biochemical Engineering/Biotechnology 81 (2003) 1 – 30.
Google Scholar
[12]
H. N. Gavala, I. Angelidaki, B. K. Ahring, Kinetics and Modeling of Anaerobic Digestion Process, Advances in Biochemical Engineering/ Biotechnology 81 (2003) 57- 93.
DOI: 10.1007/3-540-45839-5_3
Google Scholar
[13]
K.J. Chae, A. Jang, S.K. Yim, I. S. Kim, The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure, Bioresource Technology 99 (2008) 1–6.
DOI: 10.1016/j.biortech.2006.11.063
Google Scholar
[14]
H. Pobeheim, B. Munk, J. Johansson, G. M. Guebitz, Influence of trace elements on methane formation from a synthetic model substrate for maize silage, Bioresource Technology 101 (2010) 836–839.
DOI: 10.1016/j.biortech.2009.08.076
Google Scholar
[15]
M. Aresta, M. Narracci, I. Tommasi, Influence of iron, nickel and cobalt on biogas production during the anaerobic fermentation of fresh residual biomass, Chemistry and Ecology, 19 (6) (2003) 451 – 459.
DOI: 10.1080/02757540310001629134
Google Scholar
[16]
S. Ghanimeh, M. El Fadel, P. Saikaly, Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste, Bioresource Technology 117 (2012) 63–71.
DOI: 10.1016/j.biortech.2012.02.125
Google Scholar
[17]
T. Al Seadi, Good practice in quality management of AD residues from biogas production, Report made for the Int. Energy Agency, Task 24 - Energy from Biological Conversion of Organic Waste. Published by IEA Bioenergy and AEA Technology Environment, Oxfordshire, UK, (2001).
Google Scholar
[18]
J.B. Holm-Nielsen, T. Al Seadi, P. Oleskowicz-Popiel, The future of anaerobic digestion and biogas utilization, Bioresource Technology 100 (2009) 5478–5484.
DOI: 10.1016/j.biortech.2008.12.046
Google Scholar
[19]
IEA Bioenergy Task 37, Upgrading plant list 2013. Available at: http: /www. iea-biogas. net/plant-list. html.
Google Scholar
[20]
Information on http: /www. agro-business. ro.
Google Scholar
[21]
Information on http: /www. ecomagazin. ro.
Google Scholar
[22]
Information on http: /www. energyreport. ro.
Google Scholar
[23]
I. Popescu, Instalație pilot pentru producerea biogazului Oraș Seini, județul Maramureș - Raportul privind impactul asupra mediului, (2013).
Google Scholar
[24]
Information on http: /agrointel. ro.
Google Scholar
[25]
http: /www. renexpo-bucharest. com.
Google Scholar
[26]
EBA - European Biogas Association, Biogas- simply the best, Renewable Energy House, Brussels, Belgium, (2011).
Google Scholar
[27]
A. Hilkiah Igoni, M.J. Ayotamuno, C.L. Eze, S.O.T. Ogaji, S.D. Probert, Designs of anaerobic digesters for producing biogas from municipal solid-waste, Applied Energy 85 (2008) 430–438.
DOI: 10.1016/j.apenergy.2007.07.013
Google Scholar
[28]
Information on http: /www. oregon. gov/ENERGY/RENEW/Biomass/Pages/Biogas. aspx.
Google Scholar
[29]
T. Fischer, A. Krieg, Planning and construction of biogas plants, Krieg&Fischer Ingenieure GmbH, Germany.
Google Scholar
[30]
C. Hulteberg, F. Bauer, T. Persson, D. Tamm, Biogas upgrading – Review of commercial technologies, Swedish Gas Technology Centre, SGC Rapport 2013: 270, available on http: /www. sgc. se.
Google Scholar
[31]
A. Kohl and R. Nielsen, Gas Purification, 5th Ed., Gulf Publishing Company, 1997, 734.
Google Scholar
[32]
R. W. Baker, Membrane Technology and applications, sec. Ed., John Wiley & Sons Ltd, (2004).
Google Scholar
[33]
Information on http: /www. airliquideadvancedtechnologies. com.
Google Scholar