Nonlinear Response of Graphite-Epoxy Composite Thin-Walled Structure under Elevated Thermal Environment

Article Preview

Abstract:

Composite materials thin-walled structures are widely used as skin panel in flight vehicles in recent years. These structures will encounter severe complex loading conditions, which may be a combination of mechanical, aerodynamic, thermal and acoustic loads. Thin-walled structures subjected to this kind of loadings will exhibit nonlinear response; as a result, fatigue failure will occur. High temperature may cause large thermal deflection and stress, for some special conditions, may cause thermal buckling. Once the thermal buckling appears, the stiffness will change correspondingly, it will cause significant influence on the dynamic response and fatigue failure. Accordingly, it is important to research the nonlinear response of this kind of structures under elevated thermal environment. Nonlinear response and thermal pre-buckling/post-buckling behavior of a Graphite-Epoxy composite plate subjected to server thermal loading is numerically investigated in this paper. A composite laminated plate with clamped-clamped boundary conditions is chosen as simulated body, nonlinear finite element model is developed using the first-order shear deformable plate theory, Von Karman strain-displacement relations, and the principle of virtual work. The thermal load is assumed to be a steady-state with different predefined temperature distribution. The thermal strain is stated as an integral quantity of the thermal expansion coefficient with respect to temperature. Then the modes of the plate are analyzed, the nature frequencies and modal shapes are obtained. The critical temperature of buckling is calculated. The static nonlinear equations of motions are solved by the Newton-Raphson iteration technique to obtain the thermal post-buckling deflection. The Riks method is used to analyze static post-buckling behavior. In the numerical examples, four types of situations are studied, which include i) the buckling behaviors for different initial imperfections, ii) the buckling behaviors for different thickness to width ratios, and iii) The buckling behaviors for different width to length ratios; The critical temperature, the static thermal post-buckling deflection and the load to displacement relation are presented respectively. The influences of different boundary conditions on the buckling behaviors of the plate are achieved as well. The simulation method and results presented in this paper can be valuable references for further analysis of the nonlinear responses of thin-walled structures under complex loading conditions.

You have full access to the following eBook

Info:

Periodical:

Pages:

865-869

Citation:

Online since:

December 2011

Export:

Share:

Citation:

[1] E. H Dowell., A Review of the Aero elastic Stability of Plates and Shells, AIAA Journal, Vol. 8, No. 3, (1970), pp.385-399

Google Scholar

[2] C. Mei., A Finite Element Formulation for the Large Deflection Random Response of Thermally Buckled Plates, AlAA 12th Aero acoustics Conference (1989)

DOI: 10.2514/6.1989-1100

Google Scholar

[3] E. Riks., An incremental approach to the solution of snapping and buckling problems (1979)

Google Scholar

[4] C. Charles., Finite element analysis of thermal post-buckling and vibrations of thermally buckled composite plates (1991)

DOI: 10.2514/6.1991-1239

Google Scholar

[5] H. Hesham., Thermo acoustic Random Response of Shape Memory Alloy Hybrid Composite Plates, JOURNAL OF AIRCRAFT Vol. 45, No. 3 (2008)

Google Scholar

[6] Y. SHI., R.Y.Y. Lee, , and C. MEI., Thermal Post buckling of Composite Plates Using the Finite Element Modal Coordinate Method, Journal of Thermal Stresses, Vol. 22, No,. 6, Aug. (1999), pp.595-614

DOI: 10.1080/014957399280779

Google Scholar

[7] R. Jones., and J. Mazumdar., Vibration and Buckling of Plates at Elevated Temperatures, International Journal of Solids and Structures, Vol. 16, No. 1, (1980), pp.61-70

DOI: 10.1016/0020-7683(80)90095-5

Google Scholar

[9] Y. Lee., R. Y Shi., and C. Mei., Coexisting Thermal Post buckling of Composite Plates with Initial Imperfections Using Finite Element Modal Method, Journal of Thermal Stresses, Vol. 22, No. 6, (1999), pp.595-614

DOI: 10.1080/014957399280779

Google Scholar

[10] H. Ibrahim., M. Tawfik., and .M. Al-Ajmi., Thermal Buckling and Nonlinear Flutter Behavior of Functionally Graded Material Panels, Journal of Aircraft, Vol. 44, No. 5, (2007), pp.1610-1618

DOI: 10.2514/1.27866

Google Scholar

[11] J. E Locke., Finite Element Large Deflection Random Response of Thermally Buckled Plates, Journal of Sound and Vibration, Vol. 160, No. 2, (1993), pp.301-312.

DOI: 10.1006/jsvi.1993.1025

Google Scholar

[12] J. M Dhainaut., B. Duan., C. Mei., S. M. Spottswood., and H.F Wolfe., Nonlinear Response of Composite Panels to Random Excitations at Elevated Temperatures, Structural Dynamics: Recent Advances, Southampton Univ, Southampton, England, U.K, (2000), pp.769-784

Google Scholar