Optical Properties of Chemical Vapour Etching Based Porous Silicon for Multicrystalline Solar Cells

Article Preview

Abstract:

In this paper, we report a study on the possibility of fabricating porous silicon by exposing a multicrystalline silicon surface to gaseous etchants. The structural and optical properties of porous silicon (PS) layers prepared by vapour –etching (VE) are investigated. FTIR analysis confirms the existence of hydrogen incorporation bonding to the silicon atoms. Photoluminescence measurements reveal an efficient emission around 640 nm. The optical behaviour in the 350-1000 nm wavelength range was determined before and after PS formation, resulting in a notable reduction of reflectance and an enlargement of low reflectance region into short wavelengths and near IR region after PS formation. A significant increase of the quantum efficiency particularly in the short wavelength region is observed. The results make the use of such thin film very promising for multicrystalline silicon solar cell application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-62

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.T. Canham, Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers, Applied Physics Letters, N°57, N°10, (1990) 1046.

DOI: 10.1063/1.103561

Google Scholar

[2] M. Jayachandran, M. Paramasivam, K.R. Murali, D.C. Trivedi and M. Raghavan, Synthesis of porous silicon nanostructures for photoluminescent devices, Mater. phys. Mech. 4 (2001) 143.

Google Scholar

[3] M. Bengston, S. Ekstrom, J. Dratt, A. Collins, E. Csoregi, G. Marko, T. Laurell, Application of microstructured porous silicon as biocatalytic surface, Phys. Status Solidi (a) 182 (2000) 495.

DOI: 10.1002/1521-396x(200011)182:1<495::aid-pssa495>3.0.co;2-4

Google Scholar

[4] S. M. Weiss and P. M. Fauchet, Electrically tunable porous silicon active mirrors, Phys. Stat. Sol. A 197, (2003) 556.

DOI: 10.1002/pssa.200306562

Google Scholar

[5] Jarkko J. Saarinen, Sharon M. Weiss, Philippe M. Fauchet and J. E. Sipe, Optical sensor based on resonant porous silicon structures, OPTICS EXPRESS Vol. 13, No. 10, (2005) 3754.

DOI: 10.1364/opex.13.003754

Google Scholar

[6] Asmiet Ramizy, Wisam J Aziz, Z Hassan, Khalid Omar and K Ibrahim, The effect of porosity on the properties of silicon solar cell. Microelectronic International, 27, (2010) 117.

DOI: 10.1108/13565361011034812

Google Scholar

[7] E. Osorio, R. Urteaga, L.N. Acquaroli, G. Garcı´a-Salgado, H. Juare´z, R.R. Koropecki, Optimization of porous silicon multilayer as antireflection coatings for solar Solid Cell, Solar Energy Mater. 95 (2011) 3069.

DOI: 10.1016/j.solmat.2011.06.036

Google Scholar

[8] J. Xiao, L. Wang, X. Li, X. Pi, D. Yang, Reflectivity of porous pyramids structured silicon surface. Appl. Surf. Sci. 257, (2010) 472.

DOI: 10.1016/j.apsusc.2010.07.014

Google Scholar

[9] K. Xiong, S. Lu, D. Jiang, J. Dong, H. Yang, Effective recombination velocity of textured surfaces. Appl. Phys. Lett. 96, (2010) 193107.

Google Scholar

[10] M. Ben Rabha, B. Bessaïs, Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon, Solar Energy 84, (2010) 486.

DOI: 10.1016/j.solener.2010.01.007

Google Scholar

[11] R.B. Cláudia, R.B. Maurício, F.B. Antonioand, G.F. Neidenêi, Morphological and optical characteristics of porous silicon produced by anodization process in HF–acetonitrile and HF–ethanol solutions, J. Braz. Chem. Soc. 19 (2008) 769.

DOI: 10.1590/s0103-50532008000400022

Google Scholar

[12] R. Chaoui, B. Mahmoudi and Y. Si Ahmed, Porous Silicon Antireflection Layer for Solar Cell Using Metal-Assisted Chemical Etching, Physica Status Solidi (A), Vol. 205, N°7, (2008) 1719.

DOI: 10.1002/pssa.200723598

Google Scholar

[13] T. Hadjersi, N. Gabouze, A. Ababou, M. Boumaour, W. Chergui, H. Cheraga, S. Belhouse, A. Djeghri, Metal-Assisted Chemical Etching of Multicrystalline Silicon in HF/ Na2S2O8 Produces Porous Silicon, Materials Science Forum, Vols. 480-481, (2005).

DOI: 10.4028/www.scientific.net/msf.480-481.139

Google Scholar

[14] K. Tsujino, M. Matsumura, Formation of a low reflective surface on crystalline silicon solar cells by chemical treatment using Ag electrodes as the catalyst, Solar Energy Materials & Solar Cells 90 (2006) 1527.

DOI: 10.1016/j.solmat.2005.10.017

Google Scholar

[15] P.K. Singh, R. Kumar, M. Lal, S.N. Singh, B.K. Das, Effectiveness of anisotopic etching of silicon in aqueous alkaline solutions, Sol. Energy Mater. Sol. Cells 70 (2001) 103.

DOI: 10.1016/s0927-0248(00)00414-1

Google Scholar

[16] A. Ramizy, W.J. Aziz, Z. Hassan, K. Omar, K. Ibrahim, Improved performance of solar cell based on porous silicon surfaces, Optik – Int. J. Light Electron Opt. 122, (2011) (2075).

DOI: 10.1016/j.ijleo.2010.11.026

Google Scholar

[17] B.S. Richards, Luminescent layers for enhanced silicon solar cell performance: Down-conversion, Sol. Energy Mater. Sol. Cells 90 (2006) 1189.

DOI: 10.1016/j.solmat.2005.07.001

Google Scholar

[18] S. Olibet, E. Vallat-Sauvain, C. Ballif, Model for a-Si: H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds. Phys. Rev. B 76, (2007) 035326.

DOI: 10.1103/physrevb.76.035326

Google Scholar

[19] S. Kalem, O. Yavuzctin, Possibility of fabricating light- emitting porous silicon from gas phase etchants, Optic Express 7 (2000) 6.

DOI: 10.1364/oe.6.000007

Google Scholar

[20] G. Kopitkovas, I. Mikulskas, K. Grigoras, I. Simkiene, R. Tomasiunas, Solar cells with porous silicon: modification of surface-recombination velocity Applied Physics A. 73 (2001) 495.

DOI: 10.1007/s003390100799

Google Scholar