Thermo-Oxidative Behavior of Carbon Black Composites for Self-Regulating Heaters

Article Preview

Abstract:

The composite materials for self-regulating heaters are conductive composites based on a polymer matrix and a dispersed conductive filler consisting in either carbon black or another carbon material, such as graphite or nanotubes. Similar materials are suitable for sensors and current limitations. As these materials used in heating applications work usually at elevated temperatures in presence of air, the ageing processes would be an important limiting factor of their lifetime. Therefore, thermal oxidation processes and crystallinity changes during the service of these products are of major interest in durability studies. The potential interference of carbon-based materials with the oxidation and ageing of polymer matrix shall be known in order to correctly estimate the durability of such materials. The effect of radiation exposure is studied taking into account the potential use of such materials in radiation environments. In this work, the activation energies of some initial, unaged and aged products at elevated temperatures are compared in order to characterize the effect of thermo-oxidative ageing and hence to evaluate their durability. The effect of some antioxidants is also discussed. The crystallinity, calculated from DSC was used for evaluation of the physical changes induced within the aged materials, following the procedures described in previous work. FTIR-ATR technique was used for characterization of chemical changes induced by ageing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-80

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Makuuchi, S. Cheng, Radiation Processing of Polymer Materials and its Industrial Applications. John Wiley & Sons 2012, Ch 6.

Google Scholar

[2] H. Chu, Z. Zhang, Y. Liu, J. Leng: Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon 66 (2014) 154-163.

DOI: 10.1016/j.carbon.2013.08.053

Google Scholar

[3] R. Setnescu, A.R. Caramitu, M. Lungulescu, S. Mitrea, A. Bara, N. Stancu, Electroconductive composite presenting self-regulating temperature effect and process for making them. Patent application (RO) OSIM A/01053, 05.12.(2018).

Google Scholar

[4] Y. Nakaramontri, C. Kummerlöwe, N. Vennemann, S. Wisunthorn, S. Pichaiyut, C. Nakason, Effect of bis(triethoxysilylpropyl) tetrasulfide (TESPT) on properties of carbon nanotubes and conductive carbon black hybrid filler filled natural rubber nanocomposites. eXPRESS Polymer Letters 12 (2018) 867–884.

DOI: 10.3144/expresspolymlett.2018.75

Google Scholar

[5] L. Bokobza, Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites, Polym. Adv. Technol 23 (2012) 1543–1549.

DOI: 10.1002/pat.3027

Google Scholar

[6] L. Bokobza, Jean-Luc Bruneel, Michel Couzi, Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites, C 1 (2015), 77-94.

DOI: 10.3390/c1010077

Google Scholar

[7] T. Zaharescu, S. Jipa, R. Setnescu, Celia Santos, B. Gigante, I. Mihalcea, C. Podina, L-M. Gorghiu, Thermal stability of additivated isotactic polypropylene. Polymer Bulletin 49 (2002) 289-296.

DOI: 10.1007/s00289-002-0098-8

Google Scholar

[8] S. Jipa, T. Zaharescu, B. Gigante, C. Santos, R. Setnescu, T. Setnescu, M. Dumitru, L.M. Gorghiu, W. Kappel, I. Mihalcea, Chemiluminescence investigation of thermo-oxidative degradation of polyethylenes stabilized with fullerenes, Polym. Degrad. Stab. 80 (2003) 209–216.

DOI: 10.1016/s0141-3910(02)00392-0

Google Scholar

[9] G. Prusty and S.K. Swain, Synthesis and characterization of conducting gas barrier polyacrylonitrile/graphite nanocomposites. Polym. Compos. 32 (2011) 1336–1342.

DOI: 10.1002/pc.21155

Google Scholar

[10] A-R. Caramitu, R. Setnescu, M. Lungulescu, S. Mitrea, J. Pintea: Dielectric behaviour of some composite materials of HDPE/CB type. Electrotehnica, Electronica, Automatica (EEA) 66 (2018) 73-79.

Google Scholar

[11] S. Ilie, R. Setnescu, Radiation Induced Aging Effects in Polymeric Cable Insulators at CERN, EDMS no 1055599 (2009).

Google Scholar

[12] S. Ilie, R. Setnescu, E.M. Lungulescu, V. Marinescu, D. Ilie, T. Setnescu, G. Mares, Investigations of a mechanically failed cable insulation used in indoor conditions. Polymer Testing 30 (2010), 173 - 182.

DOI: 10.1016/j.polymertesting.2010.11.016

Google Scholar

[13] G. Zerbi, G. Galiano, N.D. Fanti, L. Baini, Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy. Polymer, 30 (1989) 2324 - 2327.

DOI: 10.1016/0032-3861(89)90269-3

Google Scholar

[14] R. Setnescu, S. Jipa, T. Setnescu, W. Kappel, S. Kobayashi, Z. Osawa, Carbon 37 (1999) 1–6.

DOI: 10.1016/s0008-6223(98)00168-7

Google Scholar

[15] F. Cataldo, The Role of Fullerene-Like Structures in Carbon Black and Their Interaction with Dienic Rubber, Fullerene Sci. Technol, 8 (2000) 105-112.

DOI: 10.1080/10641220009351401

Google Scholar

[16] D. Xiang, L. Wang, Q. Zhang, B. Chen, Y. Li, E. Harkin-Jones, Comparative Study on the Deformation Behavior, Structural Evolution, and Properties of Biaxially Stretched High-Density Polyethylene/Carbon Nanofiller (Carbon Nanotubes, Graphene Nanoplatelets, and Carbon Black) Composites, Polymer Composites 2018 (2018) E909-E923.

DOI: 10.1002/pc.24328

Google Scholar

[17] H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29 (1957), 1702–1706.

DOI: 10.1021/ac60131a045

Google Scholar

[18] M.J. Starink, A new method for the derivation of activation energies from experiments performed at constant heating rate, Thermochim Acta 288 (1996) 97–104.

DOI: 10.1016/s0040-6031(96)03053-5

Google Scholar

[19] L. M. Dumitran, R. Setnescu, P. V. Notingher, L. V. Badicu, T. Setnescu, Method for lifetime estimation of power transformer mineral oil, Fuel 117 (2014) 756–762.

DOI: 10.1016/j.fuel.2013.10.002

Google Scholar

[20] R. Setnescu, L. V. Badicu, L. M. Dumitran, P. V. Notingher, T. Setnescu, Thermal lifetime of cellulose insulation material evaluated by an activation energy based method, Cellulose (2014) 21:823–833.

DOI: 10.1007/s10570-013-0087-0

Google Scholar

[21] E. Kovacs, Z. Wolkober, The Effect of the Chemical and Physical Properties of Carbon Black on the Thermal and Photooxidation of Polyethylene, J. Polym. Sci. Polym. Symp. 57 (1976) 171–180.

DOI: 10.1002/polc.5070570120

Google Scholar

[22] W-K. Wong, Y. G. Hsuan, Interaction Between Carbon Black and Antioxidants in High-Density Polyethylene Pipe Resin, J. Transport. Res. Board 2310 (2012) 137-144.

DOI: 10.3141/2310-15

Google Scholar

[23] P.D. Calvert, N.C. Billingham, Loss of additives from polymers: a theoretical model. J. Appl. Polym Sci. 24 (1979) 357–370.

DOI: 10.1002/app.1979.070240205

Google Scholar

[24] E. Richaud, Kinetic modelling of phenols consumption during polyethylene thermal oxidation, Eur. Polym. J. 49 (2013) 2223–2232.

DOI: 10.1016/j.eurpolymj.2013.04.027

Google Scholar

[25] A. Durmus, M. Woo, A Kaşgöz, C.W. Macosko, M Tsapatsis, Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties. European Polymer Journal 43 (2007) 3737–3749.

DOI: 10.1016/j.eurpolymj.2007.06.019

Google Scholar

[26] R.G. Alamo, W.W. Graessley, R. Krishnamoorti, D.J. Lohse, J.D. Londono, L. Mandelkern, et al, Small angle neutron scattering investigations of melt miscibility and phase segregation in blends of linear and branched polyethylenes as a function of the branch content, Macromolecules 30 (1997) 561–566.

DOI: 10.1021/ma961196j

Google Scholar

[27] R.L. Blaine, H.E. Kissinger, Homer Kissinger and the Kissinger equation, Thermochimica Acta 540 (2012) 1– 6.

DOI: 10.1016/j.tca.2012.04.008

Google Scholar

[28] S. Bădilescu, M. Giurginca, M. Toader, V. Tălpuș: IR Spectroscopy of Polymers and Additives. Ed. Tehnică, București (1982), Ch 5 (Roum.).

Google Scholar

[29] J. Petrúj, J. Marchal, Mechanism of Ketone Formation in the Thermooxidation and Radiolytic Oxidation of Low-Density Polyethylene. Radiat. Phys. Chem. 16 (1980), 27-36.

DOI: 10.1016/0146-5724(80)90110-7

Google Scholar