Electrospun Polyacrylonitrile Carbon Nanofiber for Supercapacitor Application: A Review

Article Preview

Abstract:

The need for the development of renewable energy harvesting and storage devices is on the front as the world is facing an environmental crisis due to the consumption of gallons of fossil fuels. One of the promising solutions on which many researchers are concentrating is supercapacitor as it possesses high energy and power density. Current literature study focusing on developments already had in the field of manufacturing of supercapacitors using different precursors, testing conditions, fiber dimensions, and their performance analysis. Most of the studies found that Polyacrylonitrile (PAN) based electrospun carbon fiber webs is a potential electrode material for supercapacitors. The information gathered in this article is about the electrospinning technique, Surface and electrochemical characterization methods, and recent advances in their performance are highlighted. Also, enhancement in electrochemical performance through optimization of electrospinning parameter, a precursor modification by the addition of active materials (such as carbon nanotubes, metal oxides, and catalysts), heat and surface treatment followed, and optimum fibrous structures are summarized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-42

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sahay, R., Kumar, P.S., Sridhar, R., Sundaramurthy, J., Venugopal, J., Mhaisalkar, S.G., Ramakrishna, S. Electrospun composite nanofibers and their multifaceted applications. Journal of Materials Chemistry 22, 2012.,12953-1297.

DOI: 10.1039/c2jm30966a

Google Scholar

[2] Peng, S.J., Li, L.L., Lee, K.Y.J., Tian, L.L., Srinivasan, M., Adams, S., Ramakrishna, S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22, 2016, 361-395.

DOI: 10.1016/j.nanoen.2016.02.001

Google Scholar

[3] C. Kim, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, Y.J. Kim, M. Endo, S.C. Yang, Self-sustained thin Webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride, Adv. Mater. 19, 2007, 2341–2346.

DOI: 10.1002/adma.200602184

Google Scholar

[4] Z. Xiao-Bo, C. Ming-Hai, Z. Xiao-Gang, L. Qing-Wen, Preparation of porous carbon nanofibers by electrospinning and their electrochemical capacitive behavior, Acta Physico-Chim. Sin. 26, 2010, 3169–3174.

Google Scholar

[5] Yazdani, Nur and Vinoth Mohanam. Carbon NanoTube and Nano-Fiber in Cement Mortar: Effect of Dosage Rate and Water-Cement Ratio. (2014).

DOI: 10.14355/ijmsci.2014.0402.01

Google Scholar

[6] Zhao, Z.; Hao, S.; Hao, P.; Sang, Y.; Manivannan, A.; Wu, N.; Liu, H. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J. Mater. Chem. 2015, 3, 15049–15056.

DOI: 10.1039/c5ta02770e

Google Scholar

[7] Wei, L.; Tian, K.; Zhang, X.; Jin, Y.; Shi, T.; Guo, X. 3D Porous Hierarchical Microspheres of Activated Carbon from Nature through Nanotechnology for Electrochemical Double-Layer Capacitors. ACS Sustainable Chem. Eng. 2016, 4, 6463–6472.

DOI: 10.1021/acssuschemeng.6b01227

Google Scholar

[8] Miao, Y.E., Yan, J.J., Huang, Y.P., Fan, W., Liu, T.X., Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Advances 5, 2015, 26189-26196.

DOI: 10.1039/c5ra00138b

Google Scholar

[9] Yan, J.J., Lu, H.Y., Huang, Y.P., Fu, J., Mo, S.Y., Wei, C., Miao, Y.E., Liu, T.X., Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions. Journal of Materials Chemistry 3, 2015,23299-23306.

DOI: 10.1039/c5ta06217a

Google Scholar

[10] Ding, W.Q., Liu, M.K., Miao, Y.E., Huang, Y.P., Liu, T.X., Electrospun nickel-decorated carbon nanofiber membranes as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta 159, 2015,1-7.

DOI: 10.1016/j.electacta.2015.01.197

Google Scholar

[11] Pant, B.; Pant, H.R.; Barakat, N.A.M.; Park, M.; Jeon, K.; Choi, Y.; Kim, H.-Y. Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram. Int. 2013, 39, 7029–7035.

DOI: 10.1016/j.ceramint.2013.02.041

Google Scholar

[12] Seki, N.; Arai, T.; Suzuki, Y.; Kawakami, H. Novel polyimide-based electrospun carbon nanofibers prepared using ion-beam irradiation. Polymer 2012, 53, 2062–(2067).

DOI: 10.1016/j.polymer.2012.03.026

Google Scholar

[13] Hussain, A.; Li, J.; Wang, J.; Xue, F. Hybrid Monolith of Graphene/TEMPO- Oxidized Cellulose Nanofiber as Mechanically Robust, Highly Functional, and Recyclable Adsorbent of Methylene Blue Dye. J. Nanomater. (2018).

DOI: 10.1155/2018/5963982

Google Scholar

[14] Pant, B.; Barakat, N.A.M.; Pant, H.R.; Park, M.; Saud, P.S.; Kim, J.-W.; Kim, H.-Y. Synthesis and photocatalytic activities of CdS/TiO2 nanoparticles supported on carbon nanofibers for high efficient adsorption and simultaneous decomposition of organic dyes. J. Colloid Interface Sci. 2014, 434, 159–166.

DOI: 10.1016/j.jcis.2014.07.039

Google Scholar

[15] Fatema, U.K.; Uddin, A.J.; Uemura, K.; Gotoh, Y. Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers. Text. Res. J. 2011, 81, 659–672.

DOI: 10.1177/0040517510385175

Google Scholar

[16] Miao, Y.E., Li, F., Lu, H.Y., Ya, J.J., HuangY, P., Liu, T.X., Nanocubic-Co3O4 coupled with nitrogen-doped carbon nanofiber network: a synergistic binder-free catalyst toward oxygen reduction reactions. Composites Communications 1, 2016,15-19.

DOI: 10.1016/j.coco.2016.07.003

Google Scholar

[17] Kim, C. H., Yang, C. M., Kim, Y. A., and Yang, K. S. Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance. Appl. Surf. Sci. (2019).

DOI: 10.1016/j.apsusc.2019.143693

Google Scholar

[18] Chun, D.H. Reneker, H. Fong, X. Fang, J. Deitzel, N. Beck Tan, K. Kearns, Carbon nanofibers from poly- acrylonitrile and mesophase pitch, J. Adv. Mater. 31,1999, 36–41.

Google Scholar

[19] M. Inagaki, Y. Yang, F. Kang, Carbon nanofibers prepared via electrospinning, Adv. Mater. 24 (2012) 2547–2566.

DOI: 10.1002/adma.201104940

Google Scholar

[20] A.L. Yarin, S. Koombhongse, D.H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys. 90 (2001) 4836–4846.

DOI: 10.1063/1.1408260

Google Scholar

[21] M.S.A. Rahaman, A.F. Ismail*, A. Mustafa A review of heat treatment on polyacrylonitrile fiber Polymer Degradation and Stability 92,2007, 1421 to 1432.

DOI: 10.1016/j.polymdegradstab.2007.03.023

Google Scholar

[22] Prerana Ghatmale Puneet Garg, Sunil Kadam Dr. Sachin Chavan.Review: Electro Spinning Technique and Factors Affecting Electro Spun Nano Fibers and Some Applications. IJSRD Vol.4, Issue 04, 2016 .2321-0613.

Google Scholar

[23] L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications, J. Mater. Sci. 49, 2014, 463–480.

DOI: 10.1007/s10853-013-7705-y

Google Scholar

[24] C. Kim and K. S. Yang Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning Appl. Phys. Lett. 83, 1216 (2003).

DOI: 10.1063/1.1599963

Google Scholar

[25] Xiao-Bo, C. Ming-Hai, Z. Xiao-Gang, L. Qing-Wen, Preparation of porous carbon nanofibers by electrospinning and their electrochemical capacitive behavior, Acta Physico-Chim. Sin. 26, 2010, 3169–3174.

Google Scholar

[26] Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. KOH activation of carbon nanofibers. Carbon 2004;42:1723-9.

DOI: 10.1016/j.carbon.2004.03.006

Google Scholar

[27] Jiye Li, Xin Song, Weimiao Zhang Microporous carbon nanofibers derived from poly(acrylonitrile-co- acrylic acid) for high performance supercapacitors Chem. Eur. J. Vol 26, issue15,2020,3326-3334.

DOI: 10.1002/chem.201904563

Google Scholar

[28] Lai, Ching Chang ; Lo, Chieh Tsung. / Preparation of Nanostructural Carbon Nanofibers and Their Electrochemical Performance for Supercapacitors. In: Electrochimica Acta. 2015; Vol. 183. 85-93.

DOI: 10.1016/j.electacta.2015.02.143

Google Scholar

[29] M Hussein El-Shafei Ahmed H Hassanin Free-standing interconnected carbon nanofiber electrodes: new structural designs for supercapacitor application Nanotechnology, Volume 31, Number 18.

DOI: 10.1088/1361-6528/ab6d22

Google Scholar

[30] Ouksaphea Pech and Santi MaensiriHeat Effect of Calcining Temperature on Electrospun Carbon Nanofibers for Supercapacitor, Journal of Materials Engineering and Performance2020.

Google Scholar

[31] Saufi, S.M.; Ismail, A.F. Development and characterization of polyacrylonitrile (pan) based carbon hollow fiber membrane. Songklanakarin J. Sci. Technol. 2002, 24, 843–854.

Google Scholar

[32] Salamone JC (1998) Concise polymeric materials encyclopedia. CRC Press, New York.

Google Scholar

[33] Z.Bashir A critical review of the stabilization of polyacrylonitrile carbon, Volume 29, Issue 8, 1991, 1081-1090.

Google Scholar

[34] Stephen Dalton FrankHeatley Peter M.Budd Thermal stabilization of polyacrylonitrile fibres, Polymer, Volume 40, Issue 20, September 1999, 5531-5543.

DOI: 10.1016/s0032-3861(98)00778-2

Google Scholar

[35] Faraji, S., Yardim, M. F., Can, D. S., & Sarac, A. S. (2016). Characterization of polyacrylonitrile, poly(acrylonitrile-co-vinyl acetate), and poly(acrylonitrile-co-itaconic acid) based activated carbon nanofibers. Journal of Applied Polymer Science, 134(2).

DOI: 10.1002/app.44381

Google Scholar

[36] L. Zhang, Y.-L. Hsieh, Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylo- nitrile systems, Eur. Polym. J. 45 (2009).

Google Scholar

[37] Salman N.Arshad Mohammad Naraghi Ioannis Chasiotis Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon, Volume 49, Issue 5, April 2011, Pages 1710-1719.

DOI: 10.1016/j.carbon.2010.12.056

Google Scholar

[38] Sungho Lee, Jihoon Kim, Bon-Cheol Ku, Junkyung Kim, Han-Ik Joh Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization Vol.2 No.2, April (2012).

Google Scholar

[39] Mao, Xianwen, T. Hatton, and Gregory Rutledge. A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage., COC 17, no. 13 (June 1, 2013): 1390–1401.

DOI: 10.2174/1385272811317130006

Google Scholar

[40] Zhang T, Kim CH, Cheng Y, Ma Y, Zhang H, Liu J. Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a top-down, approach. Nanoscale 2015;7:3285-91.

DOI: 10.1039/c4nr06812b

Google Scholar

[41] Zaharaddeen S. Iro, C. Subramani, A Brief Review on Electrode Materials for Supercapacitor, Int. J. Electrochem. Sci., 11 (2016) 10628 – 10643.

DOI: 10.20964/2016.12.50

Google Scholar

[42] Laila Shahreen Effects of Electrospinning Solution Properties on Formation of Beads in Tio2 Fibers with PdO Particles Journal of Engineered Fibers and Fabrics Volume 10, Issue 3 – 2015, 136-145.

DOI: 10.1177/155892501501000308

Google Scholar

[43] Farsani, R.E.; Raissi, S.; Shokuhfar, A.; Sedghi, A. FTIR study of stabilized pan fibers for fabrication of carbon fibers. World Acad. Sci. Eng. Technol. 2009, 50, 430–433.

Google Scholar

[44] Iwashita, N.; Park, C.R.; Fujimoto, H.; Shiraishi, M.; Inagaki, M. Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 2004, 42, 701–714.

DOI: 10.1016/j.carbon.2004.02.008

Google Scholar

[45] Goracheva, V.; Mikhailova, T.; Fedorkina, S.; Konnova, N.; Azarova, M.; Konkin, A. Thermographic and thermogravimetric analysis of the thermal behaviour of polyacrylonitrile fibres. Fibre Chem. 1974, 5, 496–498.

DOI: 10.1007/bf00542949

Google Scholar

[46] Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z.: Carbon Nanocages as Supercapacitor Electrode Materials. Adv Mater 2012, 24, 347-.

DOI: 10.1002/adma.201103872

Google Scholar

[47] Im, J. S.; Woo, S. W.; Jung, M. J.; Lee, Y. S.: Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst. J Colloid Interface Sci 2008, 327, 115-119.

DOI: 10.1016/j.jcis.2008.08.030

Google Scholar

[48] Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R.: Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 2007, 9, 1276-1291.

DOI: 10.1039/b613962k

Google Scholar

[49] M.Aziz A.F. Ismail X-Ray Photoelectron Spectroscopy (XPS) Membrane Characterization 2017, Pages 81-93.

DOI: 10.1016/b978-0-444-63776-5.00005-x

Google Scholar

[50] Yuxi Zhang and Gregory C. Rutledge Electrical Conductivity of Electrospun Polyaniline and Polyaniline- Blend Fibers and Mats Macromolecules 2012, 45, 4238−4246.

DOI: 10.1021/ma3005982

Google Scholar

[51] Princeton Applied Research, Applied Instrument Group, Basics of voltammetry and polarography, Application Note P-2, pp.1-12.

Google Scholar

[52] Yaghoubidoust F, Wicaksono DHB, Chandren S, Nur H (2014) Effect of graphene oxide on the structural and electrochemical behaviour of polypyrrole deposited on cotton fabric. J Mol Struct 1075: 486–493.

DOI: 10.1016/j.molstruc.2014.07.025

Google Scholar

[53] Sanliang Zhang and Ning Pan Supercapacitors Performance Evaluation Adv. Energy Mater. 2014, 1401401.

Google Scholar

[54] P. L. Taberna, P. Simon,*,a,z and J. F. Fauvarque Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors Journal of The Electrochemical Society, vol 3, 2003, 292-300M. F. Dupont , A. F. Hollenkamp , S. W. Donne , J. Electrochem. Soc. 2014 , 161 , A648.

DOI: 10.1149/1.1543948

Google Scholar

[55] Madeleine F. Dupont, Anthony F. Hollenkamp and Scott W. Donne Large Amplitude Electrochemical Impedance Spectroscopy for Characterizing the Performance of Electrochemical Capacitors Journal of The Electrochemical Society, Volume 161, Number 4, (2014).

DOI: 10.1149/2.098404jes

Google Scholar

[56] P. Kurzweil , M. Chwistek , R. Gallay , presented at the 2nd European Symposium on Super Capacitors & Applications (ESSCAP), Laus- anne, CH, 2–3 November (2006).

Google Scholar

[57] S. Ghosh, W. D. Yong, E. M. Jin, S. R. Polaki, S. M. Jeong, and H. Jun, Mesoporous carbon nanofiber engineered for improved supercapacitor performance,, Korean J. Chem. Eng., vol. 36, no. 2, p.312–320, Feb. (2019).

DOI: 10.1007/s11814-018-0199-1

Google Scholar

[58] G. He, Y. Song, S. Chen, and L. Wang, Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials,, J. Mater. Sci., vol. 53, no. 13, p.9721–9730, Jul. (2018).

DOI: 10.1007/s10853-018-2277-5

Google Scholar

[59] Y. Zeng, X. Li, S. Jiang, S. He, H. Fang, and H. Hou, Free-standing mesoporous electrospun carbon nanofiber webs without activation and their electrochemical performance,, Mater. Lett., vol. 161, p.587–590, Dec. (2015).

DOI: 10.1016/j.matlet.2015.08.154

Google Scholar

[60] M. Kim . Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor,, Carbon N. Y., vol. 99, p.607–618, Apr. (2016).

DOI: 10.1016/j.carbon.2015.12.068

Google Scholar

[61] C. H. Kim and B. H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes,, J. Power Sources, vol. 274, p.512–520, Jan. (2015).

DOI: 10.1016/j.jpowsour.2014.10.126

Google Scholar

[62] Y. J. Heo, H. I. Lee, J. W. Lee, M. Park, K. Y. Rhee, and S. J. Park, Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning,, Compos. Part B Eng., vol. 161, p.10–17, Mar. (2019).

DOI: 10.1016/j.compositesb.2018.10.026

Google Scholar

[63] R. A. Perera Jayawickramage, K. J. Balkus, and J. P. Ferraris, Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors,, Nanotechnology, vol. 30, no. 35, Jun. (2019).

DOI: 10.1088/1361-6528/ab2274

Google Scholar

[64] M. Islam and X. Lu, Activated porous carbon nanofibers for high-performance supercapacitors,, Int. J. Electrochem. Sci., vol. 14, no. 4, p.3856–3870, Apr. (2019).

Google Scholar

[65] J. Kim, Y. J. Heo, J. Y. Hong, and S. K. Kim, Preparation of porous carbon nanofibers with tailored porosity for electrochemical capacitor electrodes,, Materials (Basel)., vol. 13, no. 3, Feb. (2020).

DOI: 10.3390/ma13030729

Google Scholar

[66] A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dion, and Y. Gogotsi, Electrospun MXene/carbon nanofibers as supercapacitor electrodes,, J. Mater. Chem. A, vol. 7, no. 1, p.269–277, (2019).

DOI: 10.1039/c8ta09810g

Google Scholar

[67] S. Yu and N. V. Myung, Minimizing the Diameter of Electrospun Polyacrylonitrile (PAN) Nanofibers by Design of Experiments for Electrochemical Application,, Electroanalysis, vol. 30, no. 10, p.2330–2338, Oct. (2018).

DOI: 10.1002/elan.201800368

Google Scholar

[68] W. K. Chee et al., Electrospun graphene nanoplatelets-reinforced carbon nanofibers as potential supercapacitor electrode,, Mater. Lett., vol. 199, p.200–203, Jul. (2017).

DOI: 10.1016/j.matlet.2017.04.086

Google Scholar

[69] W. Nan, Y. Zhao, Y. Ding, A. R. Shende, H. Fong, and R. V. Shende, Mechanically flexible electrospun carbon nanofiber mats derived from biochar and polyacrylonitrile,, Mater. Lett., vol. 205, p.206–210, Oct. (2017).

DOI: 10.1016/j.matlet.2017.06.092

Google Scholar

[70] S. Perananthan, J. S. Bonso, and J. P. Ferraris, Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen,, (2019).

DOI: 10.1016/j.carbon.2016.04.083

Google Scholar

[71] X. Liu Flexible all-fiber electrospun supercapacitor,, J. Power Sources, vol. 384, p.264–269, Apr. (2018).

Google Scholar

[72] H. C. Hsu, C. H. Wang, Y. C. Chang, J. H. Hu, B. Y. Yao, and C. Y. Lin, Graphene oxides and carbon nanotubes embedded in polyacrylonitrile-based carbon nanofibers used as electrodes for supercapacitor,, J. Phys. Chem. Solids, vol. 85, p.62–68, Oct. (2015).

DOI: 10.1016/j.jpcs.2015.04.010

Google Scholar

[73] A. Gopalakrishnan, P. Sahatiya, and S. Badhulika, Template-Assisted Electrospinning of Bubbled Carbon Nanofibers as Binder-Free Electrodes for High-Performance Supercapacitors,, ChemElectroChem, vol. 5, no. 3, p.531–539, (2018).

DOI: 10.1002/celc.201700962

Google Scholar

[74] D. Lee, J. Y. Jung, M. J. Jung, and Y. S. Lee, Hierarchical porous carbon fibers prepared using a SiO2 template for high-performance EDLCs,, Chem. Eng. J., vol. 263, p.62–70, Mar. (2015).

DOI: 10.1016/j.cej.2014.10.070

Google Scholar

[75] W. K. Chee et al., Electrospun nanofiber membranes as ultrathin flexible supercapacitors,, RSC Adv., vol. 7, no. 20, p.12033–12040, (2017).

DOI: 10.1039/c7ra00406k

Google Scholar