[1]
Sahay, R., Kumar, P.S., Sridhar, R., Sundaramurthy, J., Venugopal, J., Mhaisalkar, S.G., Ramakrishna, S. Electrospun composite nanofibers and their multifaceted applications. Journal of Materials Chemistry 22, 2012.,12953-1297.
DOI: 10.1039/c2jm30966a
Google Scholar
[2]
Peng, S.J., Li, L.L., Lee, K.Y.J., Tian, L.L., Srinivasan, M., Adams, S., Ramakrishna, S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22, 2016, 361-395.
DOI: 10.1016/j.nanoen.2016.02.001
Google Scholar
[3]
C. Kim, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, Y.J. Kim, M. Endo, S.C. Yang, Self-sustained thin Webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride, Adv. Mater. 19, 2007, 2341–2346.
DOI: 10.1002/adma.200602184
Google Scholar
[4]
Z. Xiao-Bo, C. Ming-Hai, Z. Xiao-Gang, L. Qing-Wen, Preparation of porous carbon nanofibers by electrospinning and their electrochemical capacitive behavior, Acta Physico-Chim. Sin. 26, 2010, 3169–3174.
Google Scholar
[5]
Yazdani, Nur and Vinoth Mohanam. Carbon NanoTube and Nano-Fiber in Cement Mortar: Effect of Dosage Rate and Water-Cement Ratio. (2014).
DOI: 10.14355/ijmsci.2014.0402.01
Google Scholar
[6]
Zhao, Z.; Hao, S.; Hao, P.; Sang, Y.; Manivannan, A.; Wu, N.; Liu, H. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J. Mater. Chem. 2015, 3, 15049–15056.
DOI: 10.1039/c5ta02770e
Google Scholar
[7]
Wei, L.; Tian, K.; Zhang, X.; Jin, Y.; Shi, T.; Guo, X. 3D Porous Hierarchical Microspheres of Activated Carbon from Nature through Nanotechnology for Electrochemical Double-Layer Capacitors. ACS Sustainable Chem. Eng. 2016, 4, 6463–6472.
DOI: 10.1021/acssuschemeng.6b01227
Google Scholar
[8]
Miao, Y.E., Yan, J.J., Huang, Y.P., Fan, W., Liu, T.X., Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Advances 5, 2015, 26189-26196.
DOI: 10.1039/c5ra00138b
Google Scholar
[9]
Yan, J.J., Lu, H.Y., Huang, Y.P., Fu, J., Mo, S.Y., Wei, C., Miao, Y.E., Liu, T.X., Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions. Journal of Materials Chemistry 3, 2015,23299-23306.
DOI: 10.1039/c5ta06217a
Google Scholar
[10]
Ding, W.Q., Liu, M.K., Miao, Y.E., Huang, Y.P., Liu, T.X., Electrospun nickel-decorated carbon nanofiber membranes as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta 159, 2015,1-7.
DOI: 10.1016/j.electacta.2015.01.197
Google Scholar
[11]
Pant, B.; Pant, H.R.; Barakat, N.A.M.; Park, M.; Jeon, K.; Choi, Y.; Kim, H.-Y. Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram. Int. 2013, 39, 7029–7035.
DOI: 10.1016/j.ceramint.2013.02.041
Google Scholar
[12]
Seki, N.; Arai, T.; Suzuki, Y.; Kawakami, H. Novel polyimide-based electrospun carbon nanofibers prepared using ion-beam irradiation. Polymer 2012, 53, 2062–(2067).
DOI: 10.1016/j.polymer.2012.03.026
Google Scholar
[13]
Hussain, A.; Li, J.; Wang, J.; Xue, F. Hybrid Monolith of Graphene/TEMPO- Oxidized Cellulose Nanofiber as Mechanically Robust, Highly Functional, and Recyclable Adsorbent of Methylene Blue Dye. J. Nanomater. (2018).
DOI: 10.1155/2018/5963982
Google Scholar
[14]
Pant, B.; Barakat, N.A.M.; Pant, H.R.; Park, M.; Saud, P.S.; Kim, J.-W.; Kim, H.-Y. Synthesis and photocatalytic activities of CdS/TiO2 nanoparticles supported on carbon nanofibers for high efficient adsorption and simultaneous decomposition of organic dyes. J. Colloid Interface Sci. 2014, 434, 159–166.
DOI: 10.1016/j.jcis.2014.07.039
Google Scholar
[15]
Fatema, U.K.; Uddin, A.J.; Uemura, K.; Gotoh, Y. Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers. Text. Res. J. 2011, 81, 659–672.
DOI: 10.1177/0040517510385175
Google Scholar
[16]
Miao, Y.E., Li, F., Lu, H.Y., Ya, J.J., HuangY, P., Liu, T.X., Nanocubic-Co3O4 coupled with nitrogen-doped carbon nanofiber network: a synergistic binder-free catalyst toward oxygen reduction reactions. Composites Communications 1, 2016,15-19.
DOI: 10.1016/j.coco.2016.07.003
Google Scholar
[17]
Kim, C. H., Yang, C. M., Kim, Y. A., and Yang, K. S. Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance. Appl. Surf. Sci. (2019).
DOI: 10.1016/j.apsusc.2019.143693
Google Scholar
[18]
Chun, D.H. Reneker, H. Fong, X. Fang, J. Deitzel, N. Beck Tan, K. Kearns, Carbon nanofibers from poly- acrylonitrile and mesophase pitch, J. Adv. Mater. 31,1999, 36–41.
Google Scholar
[19]
M. Inagaki, Y. Yang, F. Kang, Carbon nanofibers prepared via electrospinning, Adv. Mater. 24 (2012) 2547–2566.
DOI: 10.1002/adma.201104940
Google Scholar
[20]
A.L. Yarin, S. Koombhongse, D.H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys. 90 (2001) 4836–4846.
DOI: 10.1063/1.1408260
Google Scholar
[21]
M.S.A. Rahaman, A.F. Ismail*, A. Mustafa A review of heat treatment on polyacrylonitrile fiber Polymer Degradation and Stability 92,2007, 1421 to 1432.
DOI: 10.1016/j.polymdegradstab.2007.03.023
Google Scholar
[22]
Prerana Ghatmale Puneet Garg, Sunil Kadam Dr. Sachin Chavan.Review: Electro Spinning Technique and Factors Affecting Electro Spun Nano Fibers and Some Applications. IJSRD Vol.4, Issue 04, 2016 .2321-0613.
Google Scholar
[23]
L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications, J. Mater. Sci. 49, 2014, 463–480.
DOI: 10.1007/s10853-013-7705-y
Google Scholar
[24]
C. Kim and K. S. Yang Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning Appl. Phys. Lett. 83, 1216 (2003).
DOI: 10.1063/1.1599963
Google Scholar
[25]
Xiao-Bo, C. Ming-Hai, Z. Xiao-Gang, L. Qing-Wen, Preparation of porous carbon nanofibers by electrospinning and their electrochemical capacitive behavior, Acta Physico-Chim. Sin. 26, 2010, 3169–3174.
Google Scholar
[26]
Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. KOH activation of carbon nanofibers. Carbon 2004;42:1723-9.
DOI: 10.1016/j.carbon.2004.03.006
Google Scholar
[27]
Jiye Li, Xin Song, Weimiao Zhang Microporous carbon nanofibers derived from poly(acrylonitrile-co- acrylic acid) for high performance supercapacitors Chem. Eur. J. Vol 26, issue15,2020,3326-3334.
DOI: 10.1002/chem.201904563
Google Scholar
[28]
Lai, Ching Chang ; Lo, Chieh Tsung. / Preparation of Nanostructural Carbon Nanofibers and Their Electrochemical Performance for Supercapacitors. In: Electrochimica Acta. 2015; Vol. 183. 85-93.
DOI: 10.1016/j.electacta.2015.02.143
Google Scholar
[29]
M Hussein El-Shafei Ahmed H Hassanin Free-standing interconnected carbon nanofiber electrodes: new structural designs for supercapacitor application Nanotechnology, Volume 31, Number 18.
DOI: 10.1088/1361-6528/ab6d22
Google Scholar
[30]
Ouksaphea Pech and Santi MaensiriHeat Effect of Calcining Temperature on Electrospun Carbon Nanofibers for Supercapacitor, Journal of Materials Engineering and Performance2020.
Google Scholar
[31]
Saufi, S.M.; Ismail, A.F. Development and characterization of polyacrylonitrile (pan) based carbon hollow fiber membrane. Songklanakarin J. Sci. Technol. 2002, 24, 843–854.
Google Scholar
[32]
Salamone JC (1998) Concise polymeric materials encyclopedia. CRC Press, New York.
Google Scholar
[33]
Z.Bashir A critical review of the stabilization of polyacrylonitrile carbon, Volume 29, Issue 8, 1991, 1081-1090.
Google Scholar
[34]
Stephen Dalton FrankHeatley Peter M.Budd Thermal stabilization of polyacrylonitrile fibres, Polymer, Volume 40, Issue 20, September 1999, 5531-5543.
DOI: 10.1016/s0032-3861(98)00778-2
Google Scholar
[35]
Faraji, S., Yardim, M. F., Can, D. S., & Sarac, A. S. (2016). Characterization of polyacrylonitrile, poly(acrylonitrile-co-vinyl acetate), and poly(acrylonitrile-co-itaconic acid) based activated carbon nanofibers. Journal of Applied Polymer Science, 134(2).
DOI: 10.1002/app.44381
Google Scholar
[36]
L. Zhang, Y.-L. Hsieh, Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylo- nitrile systems, Eur. Polym. J. 45 (2009).
Google Scholar
[37]
Salman N.Arshad Mohammad Naraghi Ioannis Chasiotis Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon, Volume 49, Issue 5, April 2011, Pages 1710-1719.
DOI: 10.1016/j.carbon.2010.12.056
Google Scholar
[38]
Sungho Lee, Jihoon Kim, Bon-Cheol Ku, Junkyung Kim, Han-Ik Joh Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization Vol.2 No.2, April (2012).
Google Scholar
[39]
Mao, Xianwen, T. Hatton, and Gregory Rutledge. A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage., COC 17, no. 13 (June 1, 2013): 1390–1401.
DOI: 10.2174/1385272811317130006
Google Scholar
[40]
Zhang T, Kim CH, Cheng Y, Ma Y, Zhang H, Liu J. Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a top-down, approach. Nanoscale 2015;7:3285-91.
DOI: 10.1039/c4nr06812b
Google Scholar
[41]
Zaharaddeen S. Iro, C. Subramani, A Brief Review on Electrode Materials for Supercapacitor, Int. J. Electrochem. Sci., 11 (2016) 10628 – 10643.
DOI: 10.20964/2016.12.50
Google Scholar
[42]
Laila Shahreen Effects of Electrospinning Solution Properties on Formation of Beads in Tio2 Fibers with PdO Particles Journal of Engineered Fibers and Fabrics Volume 10, Issue 3 – 2015, 136-145.
DOI: 10.1177/155892501501000308
Google Scholar
[43]
Farsani, R.E.; Raissi, S.; Shokuhfar, A.; Sedghi, A. FTIR study of stabilized pan fibers for fabrication of carbon fibers. World Acad. Sci. Eng. Technol. 2009, 50, 430–433.
Google Scholar
[44]
Iwashita, N.; Park, C.R.; Fujimoto, H.; Shiraishi, M.; Inagaki, M. Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 2004, 42, 701–714.
DOI: 10.1016/j.carbon.2004.02.008
Google Scholar
[45]
Goracheva, V.; Mikhailova, T.; Fedorkina, S.; Konnova, N.; Azarova, M.; Konkin, A. Thermographic and thermogravimetric analysis of the thermal behaviour of polyacrylonitrile fibres. Fibre Chem. 1974, 5, 496–498.
DOI: 10.1007/bf00542949
Google Scholar
[46]
Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z.: Carbon Nanocages as Supercapacitor Electrode Materials. Adv Mater 2012, 24, 347-.
DOI: 10.1002/adma.201103872
Google Scholar
[47]
Im, J. S.; Woo, S. W.; Jung, M. J.; Lee, Y. S.: Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst. J Colloid Interface Sci 2008, 327, 115-119.
DOI: 10.1016/j.jcis.2008.08.030
Google Scholar
[48]
Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R.: Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 2007, 9, 1276-1291.
DOI: 10.1039/b613962k
Google Scholar
[49]
M.Aziz A.F. Ismail X-Ray Photoelectron Spectroscopy (XPS) Membrane Characterization 2017, Pages 81-93.
DOI: 10.1016/b978-0-444-63776-5.00005-x
Google Scholar
[50]
Yuxi Zhang and Gregory C. Rutledge Electrical Conductivity of Electrospun Polyaniline and Polyaniline- Blend Fibers and Mats Macromolecules 2012, 45, 4238−4246.
DOI: 10.1021/ma3005982
Google Scholar
[51]
Princeton Applied Research, Applied Instrument Group, Basics of voltammetry and polarography, Application Note P-2, pp.1-12.
Google Scholar
[52]
Yaghoubidoust F, Wicaksono DHB, Chandren S, Nur H (2014) Effect of graphene oxide on the structural and electrochemical behaviour of polypyrrole deposited on cotton fabric. J Mol Struct 1075: 486–493.
DOI: 10.1016/j.molstruc.2014.07.025
Google Scholar
[53]
Sanliang Zhang and Ning Pan Supercapacitors Performance Evaluation Adv. Energy Mater. 2014, 1401401.
Google Scholar
[54]
P. L. Taberna, P. Simon,*,a,z and J. F. Fauvarque Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors Journal of The Electrochemical Society, vol 3, 2003, 292-300M. F. Dupont , A. F. Hollenkamp , S. W. Donne , J. Electrochem. Soc. 2014 , 161 , A648.
DOI: 10.1149/1.1543948
Google Scholar
[55]
Madeleine F. Dupont, Anthony F. Hollenkamp and Scott W. Donne Large Amplitude Electrochemical Impedance Spectroscopy for Characterizing the Performance of Electrochemical Capacitors Journal of The Electrochemical Society, Volume 161, Number 4, (2014).
DOI: 10.1149/2.098404jes
Google Scholar
[56]
P. Kurzweil , M. Chwistek , R. Gallay , presented at the 2nd European Symposium on Super Capacitors & Applications (ESSCAP), Laus- anne, CH, 2–3 November (2006).
Google Scholar
[57]
S. Ghosh, W. D. Yong, E. M. Jin, S. R. Polaki, S. M. Jeong, and H. Jun, Mesoporous carbon nanofiber engineered for improved supercapacitor performance,, Korean J. Chem. Eng., vol. 36, no. 2, p.312–320, Feb. (2019).
DOI: 10.1007/s11814-018-0199-1
Google Scholar
[58]
G. He, Y. Song, S. Chen, and L. Wang, Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials,, J. Mater. Sci., vol. 53, no. 13, p.9721–9730, Jul. (2018).
DOI: 10.1007/s10853-018-2277-5
Google Scholar
[59]
Y. Zeng, X. Li, S. Jiang, S. He, H. Fang, and H. Hou, Free-standing mesoporous electrospun carbon nanofiber webs without activation and their electrochemical performance,, Mater. Lett., vol. 161, p.587–590, Dec. (2015).
DOI: 10.1016/j.matlet.2015.08.154
Google Scholar
[60]
M. Kim . Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor,, Carbon N. Y., vol. 99, p.607–618, Apr. (2016).
DOI: 10.1016/j.carbon.2015.12.068
Google Scholar
[61]
C. H. Kim and B. H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes,, J. Power Sources, vol. 274, p.512–520, Jan. (2015).
DOI: 10.1016/j.jpowsour.2014.10.126
Google Scholar
[62]
Y. J. Heo, H. I. Lee, J. W. Lee, M. Park, K. Y. Rhee, and S. J. Park, Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning,, Compos. Part B Eng., vol. 161, p.10–17, Mar. (2019).
DOI: 10.1016/j.compositesb.2018.10.026
Google Scholar
[63]
R. A. Perera Jayawickramage, K. J. Balkus, and J. P. Ferraris, Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors,, Nanotechnology, vol. 30, no. 35, Jun. (2019).
DOI: 10.1088/1361-6528/ab2274
Google Scholar
[64]
M. Islam and X. Lu, Activated porous carbon nanofibers for high-performance supercapacitors,, Int. J. Electrochem. Sci., vol. 14, no. 4, p.3856–3870, Apr. (2019).
Google Scholar
[65]
J. Kim, Y. J. Heo, J. Y. Hong, and S. K. Kim, Preparation of porous carbon nanofibers with tailored porosity for electrochemical capacitor electrodes,, Materials (Basel)., vol. 13, no. 3, Feb. (2020).
DOI: 10.3390/ma13030729
Google Scholar
[66]
A. S. Levitt, M. Alhabeb, C. B. Hatter, A. Sarycheva, G. Dion, and Y. Gogotsi, Electrospun MXene/carbon nanofibers as supercapacitor electrodes,, J. Mater. Chem. A, vol. 7, no. 1, p.269–277, (2019).
DOI: 10.1039/c8ta09810g
Google Scholar
[67]
S. Yu and N. V. Myung, Minimizing the Diameter of Electrospun Polyacrylonitrile (PAN) Nanofibers by Design of Experiments for Electrochemical Application,, Electroanalysis, vol. 30, no. 10, p.2330–2338, Oct. (2018).
DOI: 10.1002/elan.201800368
Google Scholar
[68]
W. K. Chee et al., Electrospun graphene nanoplatelets-reinforced carbon nanofibers as potential supercapacitor electrode,, Mater. Lett., vol. 199, p.200–203, Jul. (2017).
DOI: 10.1016/j.matlet.2017.04.086
Google Scholar
[69]
W. Nan, Y. Zhao, Y. Ding, A. R. Shende, H. Fong, and R. V. Shende, Mechanically flexible electrospun carbon nanofiber mats derived from biochar and polyacrylonitrile,, Mater. Lett., vol. 205, p.206–210, Oct. (2017).
DOI: 10.1016/j.matlet.2017.06.092
Google Scholar
[70]
S. Perananthan, J. S. Bonso, and J. P. Ferraris, Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen,, (2019).
DOI: 10.1016/j.carbon.2016.04.083
Google Scholar
[71]
X. Liu Flexible all-fiber electrospun supercapacitor,, J. Power Sources, vol. 384, p.264–269, Apr. (2018).
Google Scholar
[72]
H. C. Hsu, C. H. Wang, Y. C. Chang, J. H. Hu, B. Y. Yao, and C. Y. Lin, Graphene oxides and carbon nanotubes embedded in polyacrylonitrile-based carbon nanofibers used as electrodes for supercapacitor,, J. Phys. Chem. Solids, vol. 85, p.62–68, Oct. (2015).
DOI: 10.1016/j.jpcs.2015.04.010
Google Scholar
[73]
A. Gopalakrishnan, P. Sahatiya, and S. Badhulika, Template-Assisted Electrospinning of Bubbled Carbon Nanofibers as Binder-Free Electrodes for High-Performance Supercapacitors,, ChemElectroChem, vol. 5, no. 3, p.531–539, (2018).
DOI: 10.1002/celc.201700962
Google Scholar
[74]
D. Lee, J. Y. Jung, M. J. Jung, and Y. S. Lee, Hierarchical porous carbon fibers prepared using a SiO2 template for high-performance EDLCs,, Chem. Eng. J., vol. 263, p.62–70, Mar. (2015).
DOI: 10.1016/j.cej.2014.10.070
Google Scholar
[75]
W. K. Chee et al., Electrospun nanofiber membranes as ultrathin flexible supercapacitors,, RSC Adv., vol. 7, no. 20, p.12033–12040, (2017).
DOI: 10.1039/c7ra00406k
Google Scholar