[1]
B. G. Streetman and B. Sanjay Kumar, Solid state electronic devices,, in A Solid State Electronic Devices seventh edition, p.21–42, Pearson Education Limited, (2016).
Google Scholar
[2]
M. Vogel, Masers and lasers, second edition: an historical approach,, Contemporary Physics, vol. 57, p.1–1, 12 (2015).
Google Scholar
[3]
P. Forman, Inventing the maser in postwar america,, Osiris, vol. 7, p.105–134, (1992).
DOI: 10.1086/368707
Google Scholar
[4]
I. S. Chung and J. Moerk, Vectorial analysis of dielectric photonic crystal VCSEL,, ICTON 2009: 11th International Conference on Transparent Optical Networks, vol. 1, p.1–4, (2009).
DOI: 10.1109/icton.2009.5185025
Google Scholar
[5]
S. Spiga, C. Xie, P. Dong, M. C. Amann, and P. Winzer, Ultra-high-bandwidth monolithic VCSEL arrays for high-speed metro networks,, International Conference on Transparent Optical Networks, p.1–4, (2014).
DOI: 10.1109/icton.2014.6876340
Google Scholar
[6]
W. Hofmann, E. Wong, G. Böhm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, 1.55- m VCSEL arrays for high-bandwidth WDM-PONs,, IEEE Photonics Technology Letters, vol. 20, no. 4, p.291–293, (2008).
DOI: 10.1109/lpt.2007.915631
Google Scholar
[7]
L. R. F.R.S., Xxxiv. on the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 47, no. 287, p.375–384, 1899.
DOI: 10.1080/14786449908621276
Google Scholar
[8]
J. Boucart, G. Suruceanu, P. Royo, V. I. Iakovlev, A. Syrbu, A. Caliman, A. Mereuta, A. Mircea, C. . Berseth, A. Rudra, and E. Kapon, 3.125-gb/s modulation up to 70/spl deg/c using 1.3- /spl mu/m vcsels fabricated with localized wafer fusion for 10gbase lx4 applications,, IEEE Photonics Technology Letters, vol. 18, no. 4, p.571–573, (2006).
DOI: 10.1109/lpt.2005.863980
Google Scholar
[9]
J. Lavrencik, S. Varughese, V. A. Thomas, and S. E. Ralph, Scaling vcsel-mmf links to 1 tb/s using short wavelength division multiplexing,, J. Lightwave Technol., vol. 36, p.4138–4145, Sep (2018).
DOI: 10.1109/jlt.2018.2858208
Google Scholar
[10]
M. Grabherr, New applications boost vcsel quantities: Recent developments at philips,, Proc. SPIE, vol. 9381, 03 (2015).
DOI: 10.1117/12.2081790
Google Scholar
[11]
R. Faez, A. Marjani, and S. Marjani, Design and simulation of a high power single mode 1550nm InGaAsP VCSELs,, IEICE Electronics Express, vol. 8, no. 13, p.1096–1101, (2011).
DOI: 10.1587/elex.8.1096
Google Scholar
[12]
K. Kandiah, P. S. Menon, S. Shaari, and B. Majlis, Design and modeling of a vertical-cavity surface-emitting laser (vcsel),, p.297 – 301, 12 (2008).
DOI: 10.1109/smelec.2008.4770327
Google Scholar
[13]
K. F. Brennan, Introduction to Semiconductor Devices: For Computing and Telecommunications Applications. Cambridge University Press, (2005).
Google Scholar
[14]
C. Levallois, A. L. Corre, O. Dehaese, H. Folliot, C. Paranthoen, C. Labbé, and S. Loualiche, Design and fabrication of GaInAsP/InP VCSEL with two a-Si/a-SiNx Bragg reflectors,, Optical and Quantum Electronics, vol. 38, no. 4-6, p.281–291, (2006).
DOI: 10.1007/s11082-006-0029-2
Google Scholar
[15]
N. Mubarakah, Soeharwinto, and G. Nouvan, Fiber optic trainer for link budget measurement tool in optical communication system,, in 2019 3rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), p.44–47, (2019).
DOI: 10.1109/elticom47379.2019.8943931
Google Scholar
[16]
S. Hu, X. He, Y. He, J. Su, C. Li, A. Hu, and X. Guo, Impact of damping on high speed 850 nm vcsel performance,, Journal of Semiconductors, vol. 39, p.114006, 11 (2018).
DOI: 10.1088/1674-4926/39/11/114006
Google Scholar
[17]
C.-C. Shen, T.-C. Hsu, Y.-W. Yeh, C.-Y. Kang, Y.-T. Lu, H.-W. Lin, H.-Y. Tseng, Y.-T. Chen, C.-Y. Chen, C.-C. Lin, C.-H. Wu, P.-T. Lee, Y. Sheng, C.-H. Chiu, and H.-C. Kuo, Design, modeling, and fabrication of high-speed vcsel with data rate up to 50 gb/s,, Nanoscale Research Letters, vol. 14, p.276, 08 (2019).
DOI: 10.1186/s11671-019-3107-7
Google Scholar
[18]
D. Trivedi and N. Anderson, Modeling the near-gap refractive index properties of semiconductor multiple quantum wells and superlattices,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 2, p.197–209, (1996).
DOI: 10.1109/2944.577360
Google Scholar
[19]
Y. Yamazoe, T. Nishino, Y. Hamakawa, and T. Kariya, Bandgap energy of InGaAsP quaternary alloy,, Japanese Journal of Applied Physics, vol. 19, p.1473–1479, aug (1980).
DOI: 10.1143/jjap.19.1473
Google Scholar
[20]
H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, Temperature-stable 980-nm vcsels for 35-gb/s operation at 85 °c with 139-fj/bit dissipated heat,, IEEE Photonics Technology Letters, vol. 26, no. 23, p.2349–2352, (2014).
DOI: 10.1109/lpt.2014.2354736
Google Scholar
[21]
P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, Energy efficient 40 gbit/s transmission with 850 nm vcsels at 108 fj/bit dissipated heat,, Electronics Letters, vol. 49, no. 10, p.666–667, (2013).
DOI: 10.1049/el.2013.0617
Google Scholar
[22]
H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, Temperature-stable, energyefficient, and high-bit rate oxide-confined 980-nm vcsels for optical interconnects,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, p.405–413, (2015).
DOI: 10.1109/jstqe.2015.2389731
Google Scholar
[23]
H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, Energy-efficient and temperature-stable oxide-confined 980 nm vcsels operating error-free at 38 gbit/s at 85°c,, Electronics Letters, vol. 50, no. 2, p.103–105, (2014).
DOI: 10.1049/el.2013.3941
Google Scholar
[24]
P. Qiu, B. Wu, P. Fu, M. Li, Y. Xie, and Q. Kan, Fabrication and characterization of lowthreshold single fundamental mode vcsels with dielectric dbr mirror,, IEEE Photonics Journal, vol. 13, no. 4, p.1–6, (2021).
DOI: 10.1109/jphot.2021.3089710
Google Scholar
[25]
C. Zhang, R. Elafandy, and J. Han, Distributed bragg reflectors for gan-based vertical-cavity surface-emitting lasers,, Applied Sciences, vol. 9, p.1593, 04 (2019).
DOI: 10.3390/app9081593
Google Scholar
[26]
W. G. Daniel, Numerical simulations of gain and power of a multi-quantum well laser,, in 2021 SBFoton International Optics and Photonics Conference (SBFoton IOPC), p.1–4, (2021).
DOI: 10.1109/sbfotoniopc50774.2021.9461970
Google Scholar
[27]
Z. Qiao, X. Li, J. X. Sia, W. Wang, H. Wang, L. Li, Z. Li, Z. Zhao, Y. Qu, X. Gao, B. Bo, and C. Liu, Stable mode-locked operation with high temperature characteristics of a two-section ingaas/gaas double quantum wells laser,, IEEE Access, vol. 9, p.16608–16614, (2021).
DOI: 10.1109/access.2021.3051179
Google Scholar
[28]
Z. Zheng, Y. Mei, H. Long, J. Hoo, S. Guo, Q. Li, L. Ying, Z. Zheng, and B. Zhang, Algan-based deep ultraviolet vertical-cavity surface-emitting laser,, IEEE Electron Device Letters, vol. 42, no. 3, p.375–378, (2021).
DOI: 10.1109/led.2021.3052725
Google Scholar
[29]
E. O. Odoh1 and A. S. Njapba2, A review of semiconductor quantum well devices,, IRnova, vol. 46, (2015).
Google Scholar
[30]
S. Selmic, T.-M. Chou, J. Sih, J. Kirk, A. Mantle, J. Butler, D. Bour, and G. Evans, Design and characterization of 1.3-/spl mu/m algainas-inp multiple-quantum-well lasers,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, no. 2, p.340–349, (2001).
DOI: 10.1109/2944.954148
Google Scholar
[31]
H. Liu, C. F. Lam, and C. Johnson, Scaling optical interconnects in datacenter networks opportunities and challenges for wdm,, in 2010 18th IEEE Symposium on High Performance Interconnects, p.113–116, (2010).
DOI: 10.1109/hoti.2010.15
Google Scholar
[32]
P. R. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, 81 fj/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects,, (2011).
DOI: 10.1063/1.3597799
Google Scholar
[33]
A. Mutig, J. Lott, S. Blokhin, P. Moser, P. Wolf, W. Hofmann, A. Nadtochiy, and D. Bimberg, High speed 980 nm vcsels for short reach optical interconnects operating error-free at 25 gbit/s up to 85 °c,, 05 (2011).
DOI: 10.1364/cleo_at.2011.jtui89
Google Scholar
[34]
P. Westbergh, J. S. Gustavsson, B. Kögel, Haglund, and A. Larsson, Impact of photon lifetime on high-speed vcsel performance,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 6, p.1603–1613, (2011).
DOI: 10.1109/jstqe.2011.2114642
Google Scholar
[35]
P. Goyal, M. Sharma, A. Jha, M. Kumari, S. P. Singh, N. Singh, and G. Kaur, Design and analysis of vcsel laser for third window of optical communication system,, in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), p.4220–4224, (2016).
DOI: 10.1109/iceeot.2016.7755512
Google Scholar
[36]
H. Li, P. Wolf, P. Moser, G. Larisch, J. Lott, and D. Bimberg, Temperature-stable, energyefficient, and high-bit rate oxide-confined 980-nm vcsels for optical interconnects,, IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, p.1–9, 11 (2015).
DOI: 10.1109/jstqe.2015.2389731
Google Scholar
[37]
H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. H. Bimberg, Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm vcsels,, IEEE Journal of Quantum Electronics, vol. 50, no. 8, p.613–621, (2014).
DOI: 10.1109/jqe.2014.2330255
Google Scholar