Simulation-Optimization Modeling Techniques for Groundwater Management and Sustainability: A Critical Review

Article Preview

Abstract:

Recently, groundwater resources have been subjected to negative impacts from various natural and anthropogenic factors worldwide. Hence, great efforts have been conducted in the literature to find the best management strategies for protection against groundwater quantity shortage and aquifer material contamination. Simulation-optimization (S-O) modeling has been considered one of the most feasible options for groundwater management, providing high accuracy in understanding the complex real-world water issues. This review study aims at clarifying the concepts, techniques, and stepwise methodologies of both simulation models and optimization algorithms, in addition to the applications of the integrated S-O approach in solving groundwater problems. Besides, the linkages between applications of the S-O framework and sustainable development goals (SDGs) from quantity and quality perspectives are illustrated to show the expected beneficial outcomes for various socio-economic and environmental issues in different fields. Based on this review, conclusions are drawn that may be useful for future studies related to groundwater conservation, management, and planning.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-100

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. K. Esfahani and B. Datta, Fractal singularity–based multiobjective monitoring networks for reactive species contaminant source characterization,, J. Water Resour. Plan. Manag., vol. 144, no. 6, 2018,.

DOI: 10.1061/(asce)wr.1943-5452.0000880

Google Scholar

[2] A. Lal and B. Datta, Optimal groundwater-use strategy for saltwater intrusion management in a Pacific island country,, J. Water Resour. Plan. Manag., vol. 145, no. 9, 2019,.

DOI: 10.1061/(asce)wr.1943-5452.0001090

Google Scholar

[3] M. T. Ayvaz and A. Elçi, A groundwater management tool for solving the pumping cost minimization problem for the Tahtali watershed (Izmir-Turkey) using hybrid HS-solver optimization algorithm,, J. Hydrol., vol. 478, p.63–76, 2013,.

DOI: 10.1016/j.jhydrol.2012.11.045

Google Scholar

[4] H. Ketabchi and B. Ataie-Ashtiani, Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges,, J. Hydrol., vol. 520, p.193–213, 2015,.

DOI: 10.1016/j.jhydrol.2014.11.043

Google Scholar

[5] B. G. Rajeev-Gandhi, R. K. Bhattacharjya, and M. G. Satish, Simulation–optimization-based virus source identification model for 3D unconfined aquifer considering source locations and number as variable,, J. Hazardous, Toxic, Radioact. Waste, vol. 21, no. 2, 2017,.

DOI: 10.1061/(asce)hz.2153-5515.0000334

Google Scholar

[6] E. Raei, M. R. Nikoo, and S. Pourshahabi, A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory,, J. Hydrol., vol. 551, p.407–422, 2017,.

DOI: 10.1016/j.jhydrol.2017.06.010

Google Scholar

[7] S. Ghadimi and H. Ketabchi, Possibility of cooperative management in groundwater resources using an evolutionary hydro-economic simulation-optimization model,, J. Hydrol., vol. 578, 2019,.

DOI: 10.1016/j.jhydrol.2019.124094

Google Scholar

[8] G. Y. Ebrahim, A. Jonoski, A. Al-Maktoumi, M. Ahmed, and A. Mynett, Simulation-optimization approach for evaluating the feasibility of managed aquifer recharge in the Samail lower catchment, Oman,, J. Water Resour. Plan. Manag., vol. 142, no. 2, 2016,.

DOI: 10.1061/(asce)wr.1943-5452.0000588

Google Scholar

[9] A. M. Saqr, M. G. Ibrahim, M. Fujii, and M. Nasr, Sustainable development goals (SDGs) associated with groundwater over-exploitation vulnerability: Geographic information system-based multi-criteria decision analysis,, Nat. Resour. Res., vol. 30, no. 6, p.4255–4276, 2021,.

DOI: 10.1007/s11053-021-09945-y

Google Scholar

[10] R. Peralta, B. Timani, and R. Das, Optimizing safe yield policy implementation,, Water Resour. Manag., vol. 25, no. 2, p.483–508, 2011,.

DOI: 10.1007/s11269-010-9710-0

Google Scholar

[11] Q. Ouyang, W. Lu, J. Lin, W. Deng, and W. Cheng, Conservative strategy-based ensemble surrogate model for optimal groundwater remediation design at DNAPLs-contaminated sites,, J. Contam. Hydrol., vol. 203, p.1–8, 2017,.

DOI: 10.1016/j.jconhyd.2017.05.007

Google Scholar

[12] R. Sepahvand, H. R. Safavi, and F. Rezaei, Multi-objective planning for conjunctive use of surface and ground water resources using genetic programming,, Water Resour. Manag., vol. 33, no. 6, p.2123–2137, 2019,.

DOI: 10.1007/s11269-019-02229-4

Google Scholar

[13] S. Gaur, A. Dave, A. Gupta, A. Ohri, D. Graillot, and S. B. Dwivedi, Application of artificial neural networks for identifying optimal groundwater pumping and piping network layout,, Water Resour. Manag., vol. 32, no. 15, p.5067–5079, 2018,.

DOI: 10.1007/s11269-018-2128-9

Google Scholar

[14] P. Majumder and T. I. Eldho, A new groundwater management model by coupling analytic element method and reverse particle tracking with cat swarm optimization,, Water Resour. Manag., vol. 30, no. 6, p.1953–1972, 2016,.

DOI: 10.1007/s11269-016-1262-5

Google Scholar

[15] M. Vali, M. Zare, and S. Razavi, Automatic clustering-based surrogate-assisted genetic algorithm for groundwater remediation system design,, J. Hydrol., 2020,.

DOI: 10.1016/j.jhydrol.2020.125752

Google Scholar

[16] H. K. Esfahani and B. Datta, Linked optimal reactive contaminant source characterization in contaminated mine sites: Case study,, J. Water Resour. Plan. Manag., vol. 142, no. 12, 2016,.

DOI: 10.1061/(asce)wr.1943-5452.0000707

Google Scholar

[17] A. Singh, Computer-based models for managing the water-resource problems of irrigated agriculture,, Hydrogeol. J., vol. 23, no. 6, p.1217–1227, 2015,.

DOI: 10.1007/s10040-015-1270-1

Google Scholar

[18] H. R. Safavi, F. Darzi, and M. A. Mariño, Simulation-optimization modeling of conjunctive use of surface water and groundwater,, Water Resour. Manag., vol. 24, no. 10, p.1965–1988, 2010,.

DOI: 10.1007/s11269-009-9533-z

Google Scholar

[19] S. Gaur, B. R. Chahar, and D. Graillot, Analytic elements method and particle swarm optimization based simulation-optimization model for groundwater management,, J. Hydrol., vol. 402, no. 3–4, p.217–227, 2011,.

DOI: 10.1016/j.jhydrol.2011.03.016

Google Scholar

[20] L. Meng, Q. Feng, and Q. Li, Coupled simulation–optimization model for draining confined aquifer via underground boreholes to prevent water inrush of coal mines,, Environ. Earth Sci., vol. 77, no. 17, 2018,.

DOI: 10.1007/s12665-018-7794-7

Google Scholar

[21] A. Ranjbar and N. Mahjouri, Multi-objective freshwater management in coastal aquifers under uncertainty in hydraulic parameters,, Nat. Resour. Res., vol. 29, no. 4, p.2347–2368, 2020,.

DOI: 10.1007/s11053-019-09585-3

Google Scholar

[22] J. Sreekanth and B. Datta, Comparative evaluation of genetic programming and neural network as potential surrogate models for coastal aquifer management,, Water Resour. Manag., vol. 25, no. 13, p.3201–3218, 2011,.

DOI: 10.1007/s11269-011-9852-8

Google Scholar

[23] A. W. Harbaugh, MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process. Book 6: Modeling techniques, Section A. Ground-water.,, U.S. Geol. Surv. Tech. Methods, (2005).

DOI: 10.3133/tm6a16

Google Scholar

[24] H. J. G. Diersch, FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media,, Springer, p.1–996, 2014,.

DOI: 10.1007/978-3-642-38739-5

Google Scholar

[25] L. Koskinen, M. Laitinen, J. Lofman, K. Meling, and F. Meszaros, FEFLOW: A finite element code for simulating groundwater flow, heat transfer and solute transport,, Proc. Int. Conf. Dev. Appl. Comput. Tech. to Environ. Stud., p.287–296, (1996).

Google Scholar

[26] M. Nasiri, H. K. Moghaddam, and M. Hamidi, Development of multi-criteria decision making methods for reduction of seawater intrusion in coastal aquifers using SEAWAT code,, J. Contam. Hydrol., vol. 242, 2021,.

DOI: 10.1016/j.jconhyd.2021.103848

Google Scholar

[27] C. D. Langevin, D. T. Thorne Jr., A. M. Dausman, M. C. Sukop, and W. Guo, SEAWAT version 4: A computer program for simulation of multi-species solute and heat transport,, U.S. Geol. Surv. Tech. Methods B. 6, p.39, (2007).

DOI: 10.3133/tm6a22

Google Scholar

[28] S. D. Kim, H. J. Lee, and J. S. Park, Simulation of seawater intrusion range in coastal aquifer using the FEMWATER model for disaster information,, Mar. Georesources Geotechnol., vol. 30, no. 3, p.210–221, 2012,.

DOI: 10.1080/1064119x.2011.602388

Google Scholar

[29] H. J. Lin et al., FEMWATER : A three-dimensional finite element computer model for simulating density-dependent flow and transport in variably saturated media,, Tech. Report, US Army Corps Eng., p.1–143, (1997).

Google Scholar

[30] F. Heydari, B. Saghafian, and M. Delavar, Coupled quantity-quality simulation-optimization model for conjunctive surface-groundwater use,, Water Resour. Manag., vol. 30, no. 12, p.4381–4397, 2016,.

DOI: 10.1007/s11269-016-1426-3

Google Scholar

[31] T. Borah and R. K. Bhattacharjya, Development of an improved pollution source identification model using numerical and ANN based simulation-optimization model,, Water Resour. Manag., vol. 30, no. 14, p.5163–5176, 2016,.

DOI: 10.1007/s11269-016-1476-6

Google Scholar

[32] K. Norouzi-Khatiri, M. H. Niksokhan, A. Sarang, and A. Kamali, Coupled simulation-optimization model for the management of groundwater resources by considering uncertainty and conflict resolution,, Water Resour. Manag., vol. 34, no. 11, p.3585–3608, 2020,.

DOI: 10.1007/s11269-020-02637-x

Google Scholar

[33] S. Patel, T. I. Eldho, and A. K. Rastogi, Hybrid-metaheuristics based inverse groundwater modelling to estimate hydraulic conductivity in a nonlinear real-field large aquifer system,, Water Resour. Manag., vol. 34, no. 6, p.2011–2028, 2020,.

DOI: 10.1007/s11269-020-02540-5

Google Scholar

[34] R. C. Peralta, A. Forghani, and H. Fayad, Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow,, J. Hydrol., vol. 511, p.776–785, 2014,.

DOI: 10.1016/j.jhydrol.2014.01.044

Google Scholar

[35] S. Islam and B. Talukdar, A linked simulation–optimization (LSO) model for conjunctive irrigation management using clonal selection algorithm,, J. Inst. Eng. Ser. A, vol. 97, no. 3, p.181–189, 2016,.

DOI: 10.1007/s40030-016-0169-8

Google Scholar

[36] V. Christelis and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions,, Water Resour. Manag., vol. 30, no. 15, p.5845–5859, 2016,.

DOI: 10.1007/s11269-016-1337-3

Google Scholar

[37] A. R. Awad, I. Von Poser, and M. T. Aboul-Ela, Optimal removal of heavy metals pollutants from groundwater using a real genetic algorithm and finite-difference method,, J. Comput. Civ. Eng., vol. 27, no. 5, p.522–533, 2013,.

DOI: 10.1061/(asce)cp.1943-5487.0000147

Google Scholar

[38] A. Elçi and M. T. Ayvaz, Differential-evolution algorithm based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept,, J. Hydrol., vol. 511, p.736–749, 2014,.

DOI: 10.1016/j.jhydrol.2014.01.071

Google Scholar

[39] N. S. Kawo, Y. Zhou, R. Magalso, and L. Salvacion, Optimization of an artificial-recharge–pumping system for water supply in the Maghaway valley, Cebu, Philippines,, Hydrogeol. J., vol. 26, no. 3, p.963–977, 2018,.

DOI: 10.1007/s10040-017-1693-y

Google Scholar

[40] K. Kumari and A. Dhar, Groundwater management using coupled analytic element based transient groundwater flow and optimization model,, Model. Optim. Sci. Technol., vol. 16, p.119–134, 2020,.

DOI: 10.1007/978-3-030-26458-1_8

Google Scholar

[41] H. Lu, J. Li, Y. Chen, and J. Lu, A multi-level method for groundwater remediation management accommodating non-competitive objectives,, J. Hydrol., vol. 570, p.531–543, 2019,.

DOI: 10.1016/j.jhydrol.2019.01.018

Google Scholar

[42] A. Dhar and B. Datta, Saltwater intrusion management of coastal aquifers. II: Operation uncertainty and monitoring,, J. Hydrol. Eng., vol. 14, no. 12, p.1273–1282, 2009,.

DOI: 10.1061/(asce)he.1943-5584.0000155

Google Scholar

[43] S. N. Bashi-Azghadi and R. Kerachian, Locating monitoring wells in groundwater systems using embedded optimization and simulation models,, Sci. Total Environ., vol. 408, no. 10, p.2189–2198, 2010,.

DOI: 10.1016/j.scitotenv.2010.02.004

Google Scholar

[44] J. B. Kollat and P. M. Reed, A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications,, Adv. Water Resour., vol. 30, no. 3, p.408–419, 2007,.

DOI: 10.1016/j.advwatres.2006.05.009

Google Scholar

[45] J. Sreekanth and B. Datta, Design of an optimal compliance monitoring network and feedback information for adaptive management of saltwater intrusion in coastal aquifers,, J. Water Resour. Plan. Manag., vol. 140, no. 10, 2014,.

DOI: 10.1061/(asce)wr.1943-5452.0000406

Google Scholar

[46] A. Sedki and D. Ouazar, Simulation-optimization modeling for sustainable groundwater development: A moroccan coastal aquifer case study,, Water Resour. Manag., vol. 25, no. 11, p.2855–2875, 2011,.

DOI: 10.1007/s11269-011-9843-9

Google Scholar

[47] M. K. Jhaa and B. Dattaa, Simulated annealing based simulation-optimization approach for identification of unknown contaminant sources in groundwater aquifers,, Desalin. Water Treat., vol. 32, no. 1–3, p.79–85, 2011,.

DOI: 10.5004/dwt.2011.2681

Google Scholar

[48] J. Sreekanth and B. Datta, Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization,, Water Resour. Res., vol. 47, no. 4, 2011,.

DOI: 10.1029/2010wr009683

Google Scholar

[49] P. S. Huang and Y. C. Chiu, A simulation-optimization model for seawater intrusion management at Pingtung coastal area, Taiwan,, Water (Switzerland), vol. 10, no. 3, 2018,.

DOI: 10.3390/w10030251

Google Scholar

[50] A. Ghaseminejad and M. Shourian, A simulation–optimization approach for optimal design of groundwater withdrawal wells' location and pumping rate considering desalination constraints,, Environ. Earth Sci., vol. 78, no. 9, 2019,.

DOI: 10.1007/s12665-019-8273-5

Google Scholar

[51] M. E. Abd Elmaboud, H. A. Abdel-Gawad, K. S. El-Alfy, and M. M. Ezzeldin, Estimation of groundwater recharge using simulation-optimization model and cascade forward ANN at East Nile Delta aquifer, Egypt,, J. Hydrol. Reg. Stud., vol. 34, (2021).

DOI: 10.1016/j.ejrh.2021.100784

Google Scholar

[52] A. Zidan, M. Abdalla, S. Khalaf, and A. M. Saqr, Kinetic energy and momentum coefficients for Egyptian irrigation canals,, Mansoura Eng. J., vol. 41, no. 1, p.1–16, 2016,.

DOI: 10.21608/bfemu.2020.99368

Google Scholar

[53] A. Zidan, M. Abdalla, S. Khalaf, and A. M. Saqr, Resistance equations for Egyptian irrigation canals (Case study: ʻDakahliya Governorateʼ),, Int. Water Technol. J., vol. 7, no. 2, p.73–90, 2017, doi: https://www.researchgate.net/publication/319035901_Resistance_equations_for_ Egyptian_irrigation_canals_Case_study_Dakahliya_Governorate.

DOI: 10.21608/bfemu.2020.99368

Google Scholar

[54] A. Zidan, M. Abdalla, S. Khalaf, and A. M. Saqr, Regime equations for Egyptian irrigation canals (Case study: ʻDakahliya Governorateʼ),, Int. Water Technol. J., vol. 8, no. 4, p.129–141, 2018, doi: https://www.researchgate.net/publication/333131530_Regime_equations_for_Egyptian_irrigation_canals_Case_study_Dakahliya_Governorate.

DOI: 10.21608/bfemu.2020.99368

Google Scholar

[55] J. McPhee and W. W. G. Yeh, Experimental design for groundwater modeling and management,, Water Resour. Res., vol. 42, no. 2, 2006,.

DOI: 10.1029/2005wr003997

Google Scholar

[56] M. K. Benhachmi, D. Ouazar, A. Naji, A. H. Cheng, and K. E. L. Harrouni, Chance-constrained pumping optimization in saltwater intruded aquifers by simple genetic algorithm — Stochastic model,, p.1–15, (2003).

DOI: 10.1201/9780203493496.ch11

Google Scholar

[57] L. Feyen and S. M. Gorelick, Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas,, Water Resour. Res., vol. 41, no. 3, p.1–13, 2005,.

DOI: 10.1029/2003wr002901

Google Scholar

[58] L. Feyen and S. M. Gorelick, Reliable groundwater management in hydroecologically sensitive areas,, Water Resour. Res., vol. 40, no. 7, 2004,.

DOI: 10.1029/2003wr003003

Google Scholar

[59] P. Bayer, C. M. Bürger, and M. Finkel, Computationally efficient stochastic optimization using multiple realizations,, Adv. Water Resour., vol. 31, no. 2, p.399–417, 2008,.

DOI: 10.1016/j.advwatres.2007.09.004

Google Scholar

[60] A. Singh and B. S. Minsker, Uncertainty-based multiobjective optimization of groundwater remediation design,, Water Resour. Res., vol. 44, no. 2, 2008,.

DOI: 10.1029/2005wr004436

Google Scholar

[61] J. Parker, U. Kim, P. K. Kitanidis, M. Cardiff, and X. Liu, Stochastic cost optimization of multistrategy DNAPL site remediation,, Gr. Water Monit. Remediat., vol. 30, no. 3, p.65–78, 2010,.

DOI: 10.1111/j.1745-6592.2010.01287.x

Google Scholar

[62] M. M. Rajabi and B. Ataie-Ashtiani, Sampling efficiency in Monte Carlo based uncertainty propagation strategies: Application in seawater intrusion simulations,, Adv. Water Resour., vol. 67, p.46–64, 2014,.

DOI: 10.1016/j.advwatres.2014.02.004

Google Scholar

[63] M. N. Almasri and J. J. Kaluarachchi, Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data,, Environ. Model. Softw., vol. 20, no. 7, p.851–871, 2005,.

DOI: 10.1016/j.envsoft.2004.05.001

Google Scholar

[64] G. Corzo and D. Solomatine, Baseflow separation techniques for modular artificial neural network modelling in flow forecasting,, Hydrol. Sci. J., vol. 52, no. 3, p.491–507, 2007,.

DOI: 10.1623/hysj.52.3.491

Google Scholar

[65] G. Kourakos and A. Mantoglou, Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models,, Adv. Water Resour., vol. 32, no. 4, p.507–521, 2009,.

DOI: 10.1016/j.advwatres.2009.01.001

Google Scholar

[66] G. Kourakos and A. Mantoglou, Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management,, J. Hydrol., vol. 479, p.13–23, 2013,.

DOI: 10.1016/j.jhydrol.2012.10.050

Google Scholar

[67] S. V. N. Rao, B. S. Thandaveswara, S. M. Bhallamudi, and V. Srinivasulu, Optimal groundwater management in deltaic regions using simulated annealing and neural networks,, Water Resour. Manag., vol. 17, no. 6, p.409–428, 2003,.

DOI: 10.1023/b:warm.0000004921.74256.a9

Google Scholar

[68] S. V. N. Rao, S. M. Bhallamudi, B. S. Thandaveswara, and G. C. Mishra, Conjunctive use of surface and groundwater for coastal and deltaic systems,, J. Water Resour. Plan. Manag., vol. 130, no. 3, p.255–267, 2004,.

DOI: 10.1061/(asce)0733-9496(2004)130:3(255)

Google Scholar

[69] R. K. Bhattacharjya, B. Datta, and M. G. Satish, Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers,, J. Hydrol. Eng., vol. 12, no. 3, p.273–282, 2007,.

DOI: 10.1061/(asce)1084-0699(2007)12:3(273)

Google Scholar

[70] M. P. Papadopoulou, I. K. Nikolos, and G. P. Karatzas, Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: Saltwater intrusion,, Water Sci. Technol., vol. 62, no. 7, p.1479–1490, 2010,.

DOI: 10.2166/wst.2010.442

Google Scholar

[71] R. C. Peralta, A. Forghani, and H. Fayad, Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow,, J. Hydrol., vol. 511, p.776–785, 2014,.

DOI: 10.1016/j.jhydrol.2014.01.044

Google Scholar

[72] H. R. Safavi and M. Esmikhani, Conjunctive use of surface water and groundwater: application of support vector machines (SVMs) and genetic algorithms,, Water Resour. Manag., vol. 27, no. 7, p.2623–2644, 2013,.

DOI: 10.1007/s11269-013-0307-2

Google Scholar

[73] B. Wu et al., Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach,, Water Resour. Res., vol. 51, no. 4, p.2153–2173, 2015,.

DOI: 10.1002/2014wr016653

Google Scholar

[74] V. Christelis and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions,, Water Resour. Manag., vol. 30, no. 15, p.5845–5859, 2016,.

DOI: 10.1007/s11269-016-1337-3

Google Scholar

[75] V. Christelis, R. G. Regis, and A. Mantoglou, Surrogate-based pumping optimization of coastal aquifers under limited computational budgets,, J. Hydroinformatics, vol. 20, no. 1, p.149–163, 2018,.

DOI: 10.2166/hydro.2017.063

Google Scholar

[76] Y. An, W. Lu, and X. Yan, A surrogate-based simulation–optimization approach application to parameters' identification for the hydroGeoSphere model,, Environ. Earth Sci., vol. 77, no. 17, 2018,.

DOI: 10.1007/s12665-018-7806-7

Google Scholar

[77] V. Christelis, G. Kopsiaftis, and A. Mantoglou, Performance comparison of multiple and single surrogate models for pumping optimization of coastal aquifers,, Hydrol. Sci. J., vol. 64, no. 3, p.336–349, 2019,.

DOI: 10.1080/02626667.2019.1584400

Google Scholar

[78] X. Wu, Y. Zheng, B. Wu, Y. Tian, F. Han, and C. Zheng, Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach,, Agric. Water Manag., vol. 163, p.380–392, 2015,.

DOI: 10.1016/j.agwat.2015.08.022

Google Scholar

[79] M. Karamouz, R. Kerachian, and B. Zahraie, Monthly water resources and irrigation planning: Case study of conjunctive use of surface and groundwater resources,, J. Irrig. Drain. Eng., vol. 130, no. 5, p.391–402, 2004,.

DOI: 10.1061/(asce)0733-9437(2004)130:5(391)

Google Scholar

[80] S. Razavi, B. A. Tolson, and D. H. Burn, Review of surrogate modeling in water resources,, Water Resour. Res., vol. 48, no. 7, 2012,.

DOI: 10.1029/2011wr011527

Google Scholar