[1]
O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in: STOC, p.84–93 (2005).
Google Scholar
[2]
C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem, in: STOC (2009).
DOI: 10.1145/1536414.1536461
Google Scholar
[3]
S. Agrawal, D. Boneh, and X. Boyen, Efficient lattice (H)IBE in the standard model, in: Gilbert, H. (ed. ) EUROCRYPT 2010. LNCS, vol. 6110, p.553–572. Springer, Heidelberg (2010).
DOI: 10.1007/978-3-642-13190-5_28
Google Scholar
[4]
D. Cash, D. Hofheinz, E. Kiltz and C. Peikert, Bonsai trees, or how to delegate a lattice basis, in: Gilbert, H. (ed. ) EUROCRYPT 2010. LNCS, vol. 6110, p.523–552. Springer, Heidelberg (2010).
DOI: 10.1007/978-3-642-13190-5_27
Google Scholar
[5]
C. Gentry, C. Peikert and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, in: Proc. of STOC, p.197–206. ACM, New York (2008).
DOI: 10.1145/1374376.1374407
Google Scholar
[6]
C. Peikert, B. Waters, Lossy trapdoor functions and their applications, in: STOC, p.187–196 (2008).
Google Scholar
[7]
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. in: Gilbert, H. (ed. ) EUROCRYPT 2010. LNCS, vol. 6110, p.1–23. Springer, Heidelberg (2010).
DOI: 10.1007/978-3-642-13190-5_1
Google Scholar
[8]
J. Black, P. Rogaway, T. Shrimpton, Encryption-scheme security in the presence of key-dependent messages, in: Nyberg, K., Heys, H.M. (eds. ) SAC 2002. LNCS, vol. 2595, p.62–75. Springer, Heidelberg (2003).
DOI: 10.1007/3-540-36492-7_6
Google Scholar
[9]
Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In Proc. of CRYPTO, volume 6841 of LNCS, pages 505–524. Springer, (2011).
DOI: 10.1007/978-3-642-22792-9_29
Google Scholar
[10]
B. Applebaum, D. Cash , C. Peikert and A. Sahai, Fast cryptographic primitives and circular-secure encryption based on hard learning problems, in: Halevi, S. (ed. ) CRYPTO 2009. LNCS, vol. 5677, p.595–618. Springer, Heidelberg (2009).
DOI: 10.1007/978-3-642-03356-8_35
Google Scholar
[11]
D. Boneh, S. Halevi , M. Hamburg, R. Ostrovsky, Circular-secure encryption from decision Diffie-Hellman, in: Wagner, D. (ed. ) CRYPTO 2008. LNCS, vol. 5157, p.108–125. Springer, Heidelberg (2008).
DOI: 10.1007/978-3-540-85174-5_7
Google Scholar
[12]
T. Malkin, I. Teranishi, M. Yung, Efficient circuit-size independent public key encryption with kdm security. in: Paterson, K.G. (ed. ) EUROCRYPT 2011. LNCS, vol. 6632, p.507–526. Springer, Heidelberg (2011).
DOI: 10.1007/978-3-642-20465-4_28
Google Scholar
[13]
J. Camenisch, N. Chandran and V. Shoup, A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks, Cryptology ePrint Archive, Report 2008/375 (2008).
DOI: 10.1007/978-3-642-01001-9_20
Google Scholar
[14]
D. Hofheinz, D. Unruh, Towards key-dependent message security in the standard model, in: Smart, N.P. (ed. ) EUROCRYPT 2008. LNCS, vol. 4965, p.108–126. Springer, Heidelberg (2008).
DOI: 10.1007/978-3-540-78967-3_7
Google Scholar
[15]
D. Stehle, R. Steinfeld, Making NTRU as Secure as Worst-case Problems over Ideal Lattice, EUROCRYPT (2010). Berlin Heidelberg: Springer-Verlag, LNCS, 2011, 6630: 27-47.
DOI: 10.1007/978-3-642-20465-4_4
Google Scholar
[16]
S. Khot, Hardness of approximating the shortest vector problem in lattices. J ACM 52(5): 789–808 , (2005).
DOI: 10.1145/1089023.1089027
Google Scholar
[17]
A. Lenstra, H. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math Ann 261(4): 515–534, (1982).
DOI: 10.1007/bf01457454
Google Scholar