A Kind of Block Inverse Jacket Transform

Article Preview

Abstract:

A novel block inverse Jacket transform is proposed. A cocyclic block inverse Jacket matrix is constructed in which the high-order cocyclic block inverse Jacket matrix can be decomposed into the low-order sparse cocyclic block inverse Jacket matrices with a successive block architecture , instead of the conventional block inverse Jacket matrix(BIJM). It is a fast algorithm by using recursive mode that leads to reducing computational load.

You have full access to the following eBook

Info:

[1] R. K. Yarlagadda and J. E. Hershey, Hadamard Matrix Analysis and Synthesis With Applications to Communications Signal/Image Processing, Kluwer Academic publishers, 1997.

Google Scholar

[2] K. J. Horadam, Hadamard Mastrices and Their Applications, Princeton University Press, 2006.

Google Scholar

[3] A.T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc., 13(1962) 894-898.

DOI: 10.1090/s0002-9939-1962-0142557-0

Google Scholar

[4] M. H. Lee, The Center Weighted Hadamard Transform, IEEE Trans. Circuits Syst, CAS-36(1989) 1247-1252.

DOI: 10.1109/31.34673

Google Scholar

[5] M. H. Lee and Y. Guo, A Novel Construction of Jacket Matrix from Characters on finite Abelian Group, Electronics Letters, 46(2010) 39-47.

DOI: 10.1049/el.2010.1403

Google Scholar

[6] Z. Chen and M. H. Lee, Fast cocyclic Jacket transform, IEEE Trans. Signal Processing, 56(2008) 2143-2148.

DOI: 10.1109/tsp.2007.912895

Google Scholar

[7] M. H. Lee and J. Hou, Fast block inverse Jacket transform, IEEE Signal Process. Lett., 3(2006) 461-464.

DOI: 10.1109/lsp.2006.873660

Google Scholar

[8] G. Zeng and M. H. Lee, A generalized reverse block Jacket transform, IEEE Trans. Circuits and Systems, 55(2008) 1589-1599.

DOI: 10.1109/tcsi.2008.916620

Google Scholar

[9] B. Yuri, S. M. Dodunekov and M. H. Lee, On Odd Order Jacket Matrices Over Finite Character Fields, 12th Algebraic and Combinatorial Coding Theory, Novosibirsk, Russia, Sept. 5-11, 2010.

Google Scholar

[10] Z. Chen, M. H. Lee and W. Song, Fast Cocyclic Jacket Transform Based on DFT, IEEE Inter. Conference on Communication, 2008, pp.766-769,.

DOI: 10.1109/icc.2008.91

Google Scholar

[11] M. H. Lee and Y. L. Borissov, A proof of non-existence of bordered jacket matrices of odd order over some fields, Electronics Letters, 46(2010) 349-351.

DOI: 10.1049/el.2010.2991

Google Scholar

[12] W. Song, M. H. Lee and G. Zeng, Orthogonal Space-Time Block Codes Design using Jacket Transform for MIMO Transmission System, IEEE Inter. Conference on Communication, 2008, pp.766-769.

DOI: 10.1109/icc.2008.150

Google Scholar

[13] X. Jiang, M. H. Lee, Y. Guo, Y. Yan and S. A. Latif, Ternary Codes from Modified Jacket Matrices, J. Communications and Networks, 13(2011).12-16.

DOI: 10.1109/jcn.2011.6157246

Google Scholar

[14] K. J. Horadam and P. Udaya,Cocyclic Hadamard Codes,IEEE Trans. Infor. Theory, 46(2000) 1545-1550.

DOI: 10.1109/18.850692

Google Scholar

[15] A. A. I. Perera and K. J. Horadam,Cocyclic Generalised Hadamard Matrices and Central RelativeDifference Sets, J. Designs, Codes and Crypt., 15(1998) 187-200.

Google Scholar