Additive-Accelerated Mean Regression Model for Multiple Type Recurrent Events

Article Preview

Abstract:

Recurrent events data is often observed in applied research fields like biostatistics, clinical experiment, and so on. In this paper, an additive-accelerated mean regression model is established for multiple type recurrent events data, and the estimation methods of unknown parameter and non-parameter function based on the idea of estimating equation are given.

You have full access to the following eBook

Info:

Periodical:

Pages:

93-96

Citation:

Online since:

September 2012

Authors:

Export:

Share:

Citation:

[1] J. Hyde, Biometrika 64 (1977) 225-230.

Google Scholar

[2] D.G. Clayton, J. Cuzick, J. R. Statist. Soc. A 148 (1985) 82-117.

Google Scholar

[3] U. Uzunogullari, J.L. Wang, Biometrika 79 (1992) 297-310.

Google Scholar

[4] T.L. Lai, Z. Ying, Ann. Statist. 19 (1991) 531-556.

Google Scholar

[5] Y. Li, X. Lin, Biometrika 87 (2000) 849-866.

Google Scholar

[6] D.G. Clayton, Biometrics 47 (1991) 467-485.

Google Scholar

[7] T.L. Lai, Z. Ying, Statistica Sinica 2 (1992) 17-46.

Google Scholar

[8] H. Aslanidou, D.K. Dey, D. Sinha, Can. J. Statist. 26 (1998) 33-48.

Google Scholar

[9] K.Y. Liang, S.G. Self, Y. Chang, J. Roy. Statist. Soc. Ser. B 55 (1993) 441-453.

Google Scholar

[10] Y.D. Lin, Z. Ying, Biometrika 81 (1994) 61-71.

Google Scholar

[11] D.Y. Lin, Z. Ying, J. Amer. Statist. Assoc. 88 (1993) 1341-1349.

Google Scholar

[12] J.P. Klein, Biometrics 48 (1992) 795-806.

Google Scholar

[13] I.D. Ha, Y. Lee, J.K. Song, Biometrika 88 (2001) 233-243.

Google Scholar