[1]
N. Hatziargyriou, H. Asano, Microgrids: An Overview of Ongoing Research, Development, and Demonstration Projects, http: /eetd. lbl. gov/EA/EMP/emp-pubs. html, Last Accesed: June (2012).
Google Scholar
[2]
B. Lasseter, Microgrids and distributed energy resources, Sustainability Innovation Workshop, HP Laboratories, Wuhan, October (2008).
Google Scholar
[3]
Advanced architectures and control concepts for more microgrids, European project, coord. Nikos Hatziargyriou, ICCS Company, Finished in December 2009, www. microgrids. eu, Last Accesed: June (2012).
Google Scholar
[4]
T.L. Vandoorn, B. Renders, L. Degroote, B. Meersman and L. Vandevelde, Active load control in islanded microgrids based on the grid voltage, IEEE Trans. Smart Grid, 2(1) (2011) 139 – 151.
DOI: 10.1109/tsg.2010.2090911
Google Scholar
[5]
H. Chen, J. Chen, D. Shi and X. Duan, Power flow study and voltage stability analysis for distribution systems with distributed generation, IEEE Power Eng. Soc. General Meeting, Montreal, QC, Canada, (2006).
DOI: 10.1109/pes.2006.1709198
Google Scholar
[6]
W. Bo, W. Sheng, L. Hua and X. Hua, Steady-state model and power flow analysis of grid connected photovoltaic power system, Proc. IEEE Intern. Conf. Ind. Tech., (2008) 1–6.
Google Scholar
[7]
D. Shirmohammadi, H. Hong, A. Semlyen and G. Luo, A compensation-based power flow method for weakly meshed distribution and transmission networks, IEEE Trans. Power Syst., 3 (2), (1988) 753–762.
DOI: 10.1109/59.192932
Google Scholar
[8]
C. Cheng and D. Shirmohammadi, A three-phase power flow method for real-time distribution system analysis, IEEE Trans. Power Syst., 10 (2) (1995) 671–679.
DOI: 10.1109/59.387902
Google Scholar
[9]
J. Teng, A modified Gauss-Seidel algorithm of three-phase power flow analysis in distribution networks, Intern. J. Elect. Power Energy Syst., 24 (2) (2001) 97–102.
DOI: 10.1016/s0142-0615(01)00022-9
Google Scholar
[10]
J. Vieira, W. Freitas and A. Morelato, Phase-decoupled method for three-phase power-flow analysis of unbalanced distribution systems, Proceedings Inst. Elect. Eng. Generation, Transmission Distribution, 151 (5) (2004) 568–574.
DOI: 10.1049/ip-gtd:20040831
Google Scholar
[11]
V. Costa, M. Oliveira and M. Guedes, Developments in the analysis of unbalanced three-phase power flow solutions, Intern. J. Elect. Power Energy Syst., 29 (2) (2007) 175–182.
DOI: 10.1016/j.ijepes.2006.06.005
Google Scholar
[12]
K. Lo and C. Zhang, Decomposed three-phase power flow solution using the sequence component frame, Proc. Inst. Elect. Eng., Gen., Transm. Distrib., 140 (3) (1993) 181–188.
DOI: 10.1049/ip-c.1993.0028
Google Scholar
[13]
M. Abdel-Akher, K. Nor and A. Rashid, Improved three-phase power-flow methods using sequence components, IEEE Trans. Power Syst., 20 (3) (2005) 1389–1397.
DOI: 10.1109/tpwrs.2005.851933
Google Scholar
[14]
M. Abdel-Akher, K. Nor and A. Abdul-Rashid, Development of unbalanced three-phase distribution power flow analysis using sequence and phase components, in Proc. 12th Int. Middle-East Power System Conf., (2008) 406–411.
DOI: 10.1109/mepcon.2008.4562347
Google Scholar
[15]
M. Z. Kamh, R. Iravani, Unbalanced model and power flow analysis of microgrids and active distribution systems, IEEE Tran. Power Deliv., 25 (4) (2010) 2851 – 2858.
DOI: 10.1109/tpwrd.2010.2042825
Google Scholar
[16]
L.D. Zhang, M.H.J. Bollen, A method for characterizing unbalanced voltage dips (sags) with symmetrical components, IEEE Power Engineering Letters, (1998) 50-52.
Google Scholar
[17]
L.D. Zhang, Propagation of voltage sags in power systems, PhD. thesis, Department of Electric Power Engineering and Department of Signals and Systems, Chalmers University of Technology, Goteborg, Sweden, (2000).
Google Scholar
[18]
G. -R. Gillicha, D. Frunzaverdea, N. Gillicha and D. Amariei, The use of virtual instruments in engineering education, Procedia Social and Behavioral Sciences, 2 (2010) 3806–3810.
DOI: 10.1016/j.sbspro.2010.03.594
Google Scholar
[19]
G. Bucci, E. Fiorucci and C. Landi, Digital measurement station for power quality analysis in distributed environments, IEEE Transactions on Instrumentation and Measurement, 52 (1) (February 2003) 75 – 84.
DOI: 10.1109/tim.2003.809080
Google Scholar
[20]
A. López, J. -C. Montaño, M. Castilla, J. Gutiérrez, M. Dolores Borrás and J. C. Bravo, Power system frequency measurement under non-stationary situations, IEEE Trans. Power Deliv., 23 (2) (2008) 562 – 567.
DOI: 10.1109/tpwrd.2007.916018
Google Scholar
[21]
I. Orovi´c, M. Orlandi´c, S. Stankovi´c and Z. Uskokovi´c, A Virtual instrument for time-frequency analysis of signals with highly non-stationary instantaneous frequency, IEEE Trans. Instr. Measurement., 60 (3) (2011) 791 – 803.
DOI: 10.1109/tim.2010.2060227
Google Scholar
[22]
L. Ferrigno, C. Liguori and A. Pietrosanto, Measurements for the characterization of passive components in non-sinusoidal conditions, IEEE Trans. Instr. Measurement, 51 (6) (2002) 1252 – 1258.
DOI: 10.1109/tim.2002.807989
Google Scholar
[23]
J. -H. Teng, S. -Y. Chan, J. -C. Lee and R. Lee, A LabVIEW based virtual instrument for power analyzers, IEEE Proc. Intern. Conf. Power Syst. Tech., 1 (2000) 179-184.
DOI: 10.1109/icpst.2000.900052
Google Scholar
[24]
A. Monti, F. Ponci, S. Pelizzari and L. Cristaldi, A virtual instrument for time-frequency analysis of Park power components, J. Electr. Power Qual. Utilis., XIII (1) (2007) 121 – 128.
Google Scholar
[25]
W. Xinling and Z. Cheng, Design and simulation of voltage fluctuation rate monitor system based on virtual instrument technology, Energy Procedia, 17 (2012) 450 – 455.
DOI: 10.1016/j.egypro.2012.02.119
Google Scholar
[26]
F. Adamo, F. Attivissimo, G. Cavone and N. Giaquinto, SCADA/HMI systems in advanced educational courses, Proc. IEEE Instrum. Measur. Tech. Conf., IMTC 2005, 2 (2005) 1097 – 1101.
DOI: 10.1109/imtc.2005.1604312
Google Scholar
[27]
Clarke Edith, Analysis of power systems circuits, Technical Publishing House, (1973).
Google Scholar
[28]
A. Miron, M.D. Chindriş and A.C. Cziker, Harmonics and interharmonics analysis of power signals using Gaussian filter banks, Elect. Power Syst. Res., unpublished (submitted for publication).
DOI: 10.1109/upec.2014.6934606
Google Scholar
[29]
A. Miron, M.D. Chindriş and A.C. Cziker, Time domain analysis of voltage dips/swells in modern power networks, IET Gen., Transm. & Distr., unpublished (submitted for publication).
Google Scholar
[30]
A. Cziker, A. Miron and M. Chindris, Power quality indices for unbalance characterization in non‐sinusoidal condition, 14th Intern. Research/Expert Conf. Trends in the Development of Machinery and Associated Technology, TMT 2010, 11-18 September 2010, pp.481-484.
Google Scholar
[31]
A. Miron, M.D. Chindriş and A. Cziker, Voltage dips and swells quantification in harmonic unbalanced polluted power systems, unpublished.
Google Scholar
[32]
A. Cziker and A.C. Cziker, Exploitation of power station and substations, Science Book Publishing House, Cluj – Napoca, Romania, (2006).
Google Scholar
[33]
M.J. Heathcote, The J&P Transformer book, Twelfth edition, A practical technology of the power transformer, Leed Educational and Professional Publishing Ltd. 1998, Woburn, Great Britain.
Google Scholar
[34]
A.J. Pansini, Electrical distribution engineering, The Fairmont Press Inc., Great Britain, (2007).
Google Scholar
[35]
M. Chindriş, A. Sudria, A. Cziker and Anca Miron, Propagation of unbalance in electric power systems, 9th Intern. Conf. Electr. Power Qual. Utilis., EPQU'07, Barcelona, Spain, 9 – 11 October 2007, Session 4D – Improvement and distribution loads.
DOI: 10.1109/epqu.2007.4424221
Google Scholar
[36]
A. Miron, M. Chindriş and A. Cziker, Efficiency increase of power quality analysis using virtual instrumentation, WEC REGIONAL ENERGY FORUM – FOREN 2010, Neptun, 2010, paper s3-13-en.
Google Scholar
[37]
IEC 61000-4-30 Testing and Measurement Techniques – Power Quality Measurement Methods.
Google Scholar