8 States Triple Binary Convolutional Encoders for the Construction of Turbo Codes

Article Preview

Abstract:

This paper presents the rate 3/4 (triple-binary) memory 3 recursive and systematic convolutional encoders with a single shift register (TBEm3) implemented in the observer canonical form with the best frame error rate (FER) versus signal to noise ratio (SNR) performance in configuration turbo (parallel concatenated) The triple-binary turbo-codes (TBTC) were compared in terms of performance with the turbo-codes (TC) from the actual standards of communications, at the same turbo-coding rates of 3/5 and 3/4. Besides the very good FER/SNR performance, the TBTC present several other advantages that recommend them: an effect error floor low, latency diminution, more compact blocks lower delay caused by interleaving, the possibility to connect the encoder TBTC to modulation blocks of higher order.

You have full access to the following eBook

Info:

Periodical:

Pages:

13-20

Citation:

Online since:

June 2013

Export:

Share:

Citation:

[1] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); document 10. 2. 0 (2011-06) from: http: /www. 3gpp. org/ftp/Specs/html-info/36212. htm.

Google Scholar

[2] European Telecommunications Standards Institute., Interaction channel for satellite distribution systems. V1. 3. 1 301 790, ETSI EN, March 2003, http: /www. etsi. org/deliver/etsi_en/301700_301799/301790/01. 03. 01_60/en_301790v010301p. pdf.

DOI: 10.17487/rfc3557

Google Scholar

[3] R. Johannesson, and Z. Wan, A Linear Algebra Approach to Minimal Convolutional Encoders, IEEE T Inform Theory, 39 (1993) 1219-1233.

DOI: 10.1109/18.243440

Google Scholar

[4] R. Johannesson, K. Sh. Zigangirov, Fundamentals of Convolutional Coding, IEEE Press, (1999).

Google Scholar

[5] H. Balta, A. Isar, D. Isar, M. Balta, Mirror equivalent turbo-codes – part I, ICCEN, Hong Kong, Nov. 25-27, (2011) 25-31.

Google Scholar

[6] C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon Limit Error –Correcting Coding and Decoding: Turbo –Codes, Proc. of ICC, Geneve, May 23-26, 2 (1993) 1064-1070.

DOI: 10.1109/icc.1993.397441

Google Scholar

[7] C. Weiss, C. Bettstetter, S. Riedel, and D. J. Costello, Turbo decoding with tailbiting trellises, Proc. IEEE Int. Symp. Signals, Syst., Electron., Pisa, Italy, Oct. (1998) 343–348.

DOI: 10.1109/issse.1998.738095

Google Scholar

[8] D. Divsalar and F. Pollara, Multiple Turbo Codes", MILCOM, 95, Nov. 6-8, (1995) 279-285.

DOI: 10.1109/milcom.1995.483313

Google Scholar

[9] S.N. Crozier, New High-Spread High-Distance Interleavers for Turbo-Codes, Proc. 20th Biennial Symp. Commun., Kingston, Canada, (May. 2000) 3–7.

Google Scholar

[10] Q J. Sun and O. Y. Takeshita, Interleavers for turbo codes using permutation polynomials over integer rings, IEEE T Inform Theory, 51 (2005) 101–119.

DOI: 10.1109/tit.2004.839478

Google Scholar

[11] W. Koch, and A. Baier, Optimum and sub-optimum detection of coded data disturbed by time-varying intersymbol interference, GLOBECOM, (1990) 1679-1684.

DOI: 10.1109/glocom.1990.116774

Google Scholar

[12] H. Balta, C. Douillard, M. Kovaci, The Minimum Likelihood APP Based Early Stopping Criterion for Multi-Binary Turbo Codes, Scientific Bulletin of Politehnica University of Timisoara, Transactions on Electronics and Communications, Tome 51-65, Beam 2, Timisoara, Romania, (2006).

Google Scholar

[13] A. Matache, S. Dolinar, and F. Pollara, Stopping rules for Turbo Decoders, JPL TMO Progress Report 42-142, August 15, (2000) 1-22.

Google Scholar