[1]
D.C. Popa, L. Szabo, V.I. Gliga, V. Iancu, Design of a Novel Tubular Transverse Flux Reluctance Machine, Proceedings of the 8th International Symposium on Linear Drives for Industry Applications (LDIA 2011), Eindhoven University of Technology, July 3-6, 2011, Eindhoven, Netherlands.
Google Scholar
[2]
D.C. Popa, V. Iancu, L. Szabó, Improved design of Linear Transverse Flux Reluctance Machine, Proceedings of the 11th International Conference on Optimization of Electrical and Electronic Equipment Optim 2008, Brasov, Romania, p.137 – 142.
DOI: 10.1109/optim.2008.4602400
Google Scholar
[3]
J.F. Llibre, N. Martinez, B. Nogarede, P. Leprince Linear tubular switched reluctance motor for heart assistance circulatory: Analytical and finite element modeling, 10th International Workshop on Electronics, Control, Measurement and Signals (ECMS), pp.1-6 (2011).
DOI: 10.1109/iwecms.2011.5952367
Google Scholar
[4]
J.B. Wang, D. Howe – Analysis and Design Optimization of an Improved Axially Magnetized Tubular Permanent-Magnet Machine. IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp.289-295 (2004).
DOI: 10.1109/tec.2004.827026
Google Scholar
[5]
B.L.J. Gysen, J.J.H. Paulides and E.A. Lomonova, Direct-drive electromagnetic active suspension system with integrated eddy current damping for automotive applications, Proceedings of the 8th International Symposium on Linear Drives for Industry Applications (LDIA 2011), Eindhoven University of Technology, July 3-6, 2011, Eindhoven, Netherlands.
DOI: 10.1109/ldia.2019.8770997
Google Scholar
[6]
J.B. Wang; W. Wang; K. Atallah – A Linear Permanent-Magnet Motor for Active Vehicle Suspension, IEEE Transactions on Vehicular Technology, vol. 60, no. 1, Ian. 2011, pp.55-63.
DOI: 10.1109/tvt.2010.2089546
Google Scholar
[7]
J. Chiasson; S. Danbing; S. Fanping; A. Stankovic, S. Bortoff, Independent control of two PM motors using a single inverter: application to elevator doors, Proceedings of the 2002 American Control Conference, 2002, vol. 4, p.3093 – 3098, (2002).
DOI: 10.1109/acc.2002.1025264
Google Scholar
[8]
J. Prudell, M. Stoddard, E. Amon, T. K. Brekken, Annette von Jouanne, A Permanent-Magnet Tubular Linear Generator for Ocean Wave Energy Conversion. IEEE Transactions on Industry Application, vol. 46, no. 6, November/December 2010, pp.2392-2400.
DOI: 10.1109/tia.2010.2073433
Google Scholar
[9]
V. Delli Colli, R. Di Stefano, and M. Scarano, A tubular generator for marine energy direct drive applications, in Proc. IEEE Int. Conf. Electr. Mach. Drives, May 2005, p.1473–1478.
DOI: 10.1109/iemdc.2005.195915
Google Scholar
[10]
Ioana Bentia, Contribution to the study of the rotary-linear switched reluctance motors, Ph.D. thesis, Technical University of Cluj-Napoca, (2012).
Google Scholar
[11]
http: /www. hoganas. com.
Google Scholar
[12]
D.C. Popa, V.I. Gliga, L. Szabo, V. Iancu Tubular Transverse Flux Variable Reluctance Motor in Modular Construction, Proceedings of the 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM '2012), pp.572-577 , (2012).
DOI: 10.1109/optim.2012.6231875
Google Scholar
[13]
H. Kobayashi, Y. Doi, K. Miyata, T. Minowa, Design of the axial-flux permanent magnet coreless generator for the multi-megawatts wind turbine, Proceedings of EWEC 2009, Parc Chanot, Marseille, France 16 - 19 March (2009).
Google Scholar
[14]
J.L.G. Janssen, J.J.H. Paulides, E.A. Lomonova, B. Delinchant, J.P. Yonnet, Design study on magnetic springs with low resonance frequency, Proceedings of the 8th International Symposium on Linear Drives for Industry Applications (LDIA 2011), Eindhoven University of Technology, July 3-6, 2011, Eindhoven, Netherlands.
Google Scholar
[15]
J. Snamina, A. Posiadlo, P. Habel, Active vibroisolation system with magnetic springs, XXIV Symposium Vibrations in Physical Systems, Poznan – Bedlewo, May 12-15, (2010).
Google Scholar