Total Labelling of the Tree

Article Preview

Abstract:

. The (2,1)-total labelling of the tree has been widely studied. In this paper we study the (3,1)-total labelling number of the tree. The (3,1)-total labelling number of the tree is the width of the smallest range of integers to label the vertices and the edges such that no two adjacent vertices or two adjacent edges have the same labels and the difference between the labels of a vertex and its incident edges is at least 3. We prove that if the distance of the maximum degree in the tree is not 2, then the (3,1)-total labelling number is the maximum degree plus 3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2275-2278

Citation:

Online since:

September 2011

Authors:

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. K. Hale, Frequency assignment: theory and applications, Proc IEEE 68(1980), 1497-1514.

DOI: 10.1109/proc.1980.11899

Google Scholar

[2] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2,SIAM J Discrete Math 5(1992), pp.586-595.

DOI: 10.1137/0405048

Google Scholar

[3] G. J. Chang and D. Kuo, The labelling problem on graphs, SIAM J Discrete Math 9(1996), pp.309-316.

Google Scholar

[4] G. J. Chang, W.-T. Ke, D. Kuo, Daphne D.-F. Liu, and R. K. Yeh, On labelling of graphs, Discrete Math 220(2000), pp.57-66.

Google Scholar

[5] J. P. Georges, D. W. Mauro, and M. I. Stein, Labeling products of complete graphs with a condition at distance two, SIAM J Discrete Math 14(2000), pp.28-35.

DOI: 10.1137/s0895480199351859

Google Scholar

[6] D. Kr'al and R. ˇSkrekovski, A theorem about the channel assignment problem, SIAM J Discrete Math 16(2003), pp.426-437.

DOI: 10.1137/s0895480101399449

Google Scholar

[7] M. Molloy and M. R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J Combin Theory Ser B 94(2005), pp.189-213.

DOI: 10.1016/j.jctb.2004.12.005

Google Scholar

[8] D. Sakai, Labelling chordal graphs: distance two condition, SIAM J Discrete Math 7(1994), pp.133-140.

DOI: 10.1137/s0895480191223178

Google Scholar

[9] W. Wang and K.-W. Lih, Labelling planar graphs with conditions on girth and distance two, SIAM J Discrete Math 17(2004), pp.264-275.

DOI: 10.1137/s0895480101390448

Google Scholar

[10] W. Wang, The labelling of trees, Discrete Applied Math 154(2006), pp.598-603.

Google Scholar

[11] M. A. Whittlesey, J. P. Georges, and D. W. Mauro, On the number of Qn and related graphs, SIAM J Discrete Math 8(1995), pp.499-506.

DOI: 10.1137/s0895480192242821

Google Scholar

[12] F. Havet, total labelling of graphs, Workshop on Graphs and Algorithms,Dijon, France (2003).

Google Scholar

[13] F. Havet and M.-L. Yu, total labelling of graphs, Discrete Math, in press.

Google Scholar

[14] O. V. Borodin, A. V. Kostochak, and D. R. Woodall, List edge and list total coloring of multigraphs, J Combin Theory Ser B 71(1997), pp.184-204.

DOI: 10.1006/jctb.1997.1780

Google Scholar

[15] A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math 162(1996), pp.199-214.

DOI: 10.1016/0012-365x(95)00286-6

Google Scholar

[16] M. Molloy and B. Reed, A bound on the total chromatic number, Combinatorics 18(1998), pp.241-280.

Google Scholar

[17] W. Wang, Total chromatic number of planar graphs with maximum degree ten, J Graph Theory 54(2007), pp.91-102.

DOI: 10.1002/jgt.20195

Google Scholar

[18] K.-W. Lih, Daphne D.-F. Liu, and W. Wang, A generalized total coloring of graphs, preprint, 2005.

Google Scholar

[19] F. Bazzaroa, M. Montassier, and A. Raspaud, total labelling of planar graphs with large girth and high maximum degree, Discrete Math, in press.

Google Scholar

[20] D. Chen and W. Wang, total labelling of outerplanar graphs, submitted.

Google Scholar

[21] M. Montassier and A. Raspaud, -total labelling of graphs with a given maximum average degree, J Graph Theory 51(2006), pp.93-109.

DOI: 10.1002/jgt.20124

Google Scholar

[22] Jing Huang, Haina Sun and Weifan Wang: (2,1)-totalling of trees with sparse vertices of maximum degree, Information Processing Letters. Vol 3(109), 2009. pp.199-203.

DOI: 10.1016/j.ipl.2008.10.001

Google Scholar