[1]
W. K. Hale, Frequency assignment: theory and applications, Proc IEEE 68(1980), 1497-1514.
DOI: 10.1109/proc.1980.11899
Google Scholar
[2]
J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2,SIAM J Discrete Math 5(1992), pp.586-595.
DOI: 10.1137/0405048
Google Scholar
[3]
G. J. Chang and D. Kuo, The labelling problem on graphs, SIAM J Discrete Math 9(1996), pp.309-316.
Google Scholar
[4]
G. J. Chang, W.-T. Ke, D. Kuo, Daphne D.-F. Liu, and R. K. Yeh, On labelling of graphs, Discrete Math 220(2000), pp.57-66.
Google Scholar
[5]
J. P. Georges, D. W. Mauro, and M. I. Stein, Labeling products of complete graphs with a condition at distance two, SIAM J Discrete Math 14(2000), pp.28-35.
DOI: 10.1137/s0895480199351859
Google Scholar
[6]
D. Kr'al and R. ˇSkrekovski, A theorem about the channel assignment problem, SIAM J Discrete Math 16(2003), pp.426-437.
DOI: 10.1137/s0895480101399449
Google Scholar
[7]
M. Molloy and M. R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J Combin Theory Ser B 94(2005), pp.189-213.
DOI: 10.1016/j.jctb.2004.12.005
Google Scholar
[8]
D. Sakai, Labelling chordal graphs: distance two condition, SIAM J Discrete Math 7(1994), pp.133-140.
DOI: 10.1137/s0895480191223178
Google Scholar
[9]
W. Wang and K.-W. Lih, Labelling planar graphs with conditions on girth and distance two, SIAM J Discrete Math 17(2004), pp.264-275.
DOI: 10.1137/s0895480101390448
Google Scholar
[10]
W. Wang, The labelling of trees, Discrete Applied Math 154(2006), pp.598-603.
Google Scholar
[11]
M. A. Whittlesey, J. P. Georges, and D. W. Mauro, On the number of Qn and related graphs, SIAM J Discrete Math 8(1995), pp.499-506.
DOI: 10.1137/s0895480192242821
Google Scholar
[12]
F. Havet, total labelling of graphs, Workshop on Graphs and Algorithms,Dijon, France (2003).
Google Scholar
[13]
F. Havet and M.-L. Yu, total labelling of graphs, Discrete Math, in press.
Google Scholar
[14]
O. V. Borodin, A. V. Kostochak, and D. R. Woodall, List edge and list total coloring of multigraphs, J Combin Theory Ser B 71(1997), pp.184-204.
DOI: 10.1006/jctb.1997.1780
Google Scholar
[15]
A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math 162(1996), pp.199-214.
DOI: 10.1016/0012-365x(95)00286-6
Google Scholar
[16]
M. Molloy and B. Reed, A bound on the total chromatic number, Combinatorics 18(1998), pp.241-280.
Google Scholar
[17]
W. Wang, Total chromatic number of planar graphs with maximum degree ten, J Graph Theory 54(2007), pp.91-102.
DOI: 10.1002/jgt.20195
Google Scholar
[18]
K.-W. Lih, Daphne D.-F. Liu, and W. Wang, A generalized total coloring of graphs, preprint, 2005.
Google Scholar
[19]
F. Bazzaroa, M. Montassier, and A. Raspaud, total labelling of planar graphs with large girth and high maximum degree, Discrete Math, in press.
Google Scholar
[20]
D. Chen and W. Wang, total labelling of outerplanar graphs, submitted.
Google Scholar
[21]
M. Montassier and A. Raspaud, -total labelling of graphs with a given maximum average degree, J Graph Theory 51(2006), pp.93-109.
DOI: 10.1002/jgt.20124
Google Scholar
[22]
Jing Huang, Haina Sun and Weifan Wang: (2,1)-totalling of trees with sparse vertices of maximum degree, Information Processing Letters. Vol 3(109), 2009. pp.199-203.
DOI: 10.1016/j.ipl.2008.10.001
Google Scholar