[1]
R.D. Adams, P. Cawley, C.J. Pye and B.J. Stone: A vibration technique for non-destructively assessing the integrity of structures, Journal of Mechanical Engineering Science, Vol. 20 (1978) No. 2, p.93.
DOI: 10.1243/jmes_jour_1978_020_016_02
Google Scholar
[2]
P. Cawley and R.D. Adams: The location of defects in structures from measurements of natural frequencies, The Journal of Strain Analysis for Engineering Design, Vol. 14 (1979) No. 2, p.49.
DOI: 10.1243/03093247v142049
Google Scholar
[3]
P. Cawley and R.D. Adams: A vibration technique for non-destructive testing of fibre composite structures, Journal of Composite Materials, Vol. 13 (1979), p.161.
DOI: 10.1177/002199837901300207
Google Scholar
[4]
M. Koshiba, S. Karakida and M. Suzuki: Finite element analysis of Lamb waves scattering in an elastic plate waveguide, IEEE Transactions on Sonics and Ultrasonics, Vol. 31 (1984), p.18.
DOI: 10.1109/t-su.1984.31456
Google Scholar
[5]
R.J. Talbot and J.S. Przemieniecki: Finite element analysis of frequency spectra for elastic waves guides, International Journal of Solids and Structures, Vol. 11 (1976), p.115.
DOI: 10.1016/0020-7683(75)90106-7
Google Scholar
[6]
J.C. Strickwerda: Finite Difference Schemes and Partial Differential Equations (Wadsworth Brooks, Belmont 1989).
Google Scholar
[7]
A. Zak, M. Krawczuk and W. Ostachowicz: Propagation of in-plane waves in an isotropic panel with a crack, Finite Elements in Analysis and Design, Vol. 42 (2006), p.929.
DOI: 10.1016/j.finel.2006.01.013
Google Scholar
[8]
P. Kudela, M. Krawczuk and W. Ostachowicz: Wave propagation modelling in 1D structures using spectral finite elements, Journal of Sound and Vibration, Vol. 300 (2007), p.88.
DOI: 10.1016/j.jsv.2006.07.031
Google Scholar
[9]
G.R. Liu, J. Tani, K. Watanabe and T. Ohyoshi: Harmonic wave propagation in anisotropic laminated strips, Journal of Sound and Vibration, Vol. 139 (1990), p.313.
DOI: 10.1016/0022-460x(90)90892-4
Google Scholar
[10]
J.W. Xiang, X.F. Chen and Z.J. He: The construction of 1D wavelet finite elements for structural analysis, Computational Mechanics, Vol. 40 (2007), p.325.
DOI: 10.1007/s00466-006-0102-5
Google Scholar
[11]
X.F. Chen, S.J. Yang, J.X. Ma, Z.J. He and H.B. Dong: The construction of wavelet finite element and its application, Finite Elements in Analysis and Design, Vol. 40 (2004), p.541.
DOI: 10.1016/s0168-874x(03)00077-5
Google Scholar
[12]
A. Cohen: Numerical Analysis of Wavelet Method (Elsevier Press, Amsterdam, Holland 2003).
Google Scholar
[13]
C.K. Chui and E. Quak: Wavelets on a bounded interval, Numerical Methods of Approximation Theory, Vol. 1 (1992), p.53.
DOI: 10.1007/978-3-0348-8619-2_4
Google Scholar
[14]
E. Quak and W. Norman: Decomposition and reconstruction algorithms for spline wavelets on a bounded interval, Applied and Computational Harmonic Analysis, Vol. 1 (1994), p.217.
DOI: 10.1006/acha.1994.1009
Google Scholar
[15]
J.C. Goswami, A.K. Chan and C.K. Chui, On solving first-kind integral equations using wavelets on a bounded interval, IEEE Transactions on Antennas and Propagation, Vol. 43 (1995), p.614.
DOI: 10.1109/8.387178
Google Scholar
[16]
T.J. R Hughes: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis (Prentice-Hall Inc., New Jersey 1987).
Google Scholar
[17]
J.F. Doyle: Wave Propagation in Structure (Springer, New York 1997).
Google Scholar