Power Flow and Sound Radiation of a Submerged Cylindrical Shell with Internal Structural

Abstract:

Article Preview

The vibrational power flow in a submerged infinite cylindrical shell with internal rings and bulkheads are studied analytically. The harmonic motion of the shell and the pressure field in the fluid is described by Flügge shell theory and Helmholtz equation, respectively. The coupling condition on the outer surface of the shell wall is introduced to obtain the vibrational equation of this coupled system. Both four kinds of forces (moments) between rings and shell and between bulkheads and shell are considered. The solution is obtained in series form by expanding the system responses in terms of the space harmonics of the spacing of both ring stiffeners and bulkheads. The vibrational power flow and radiated sound power are obtained and the influences of various complicating effects such as the ring, bulkhead and fluid loading on the results are analyzed. The analytic model is close to engineering practice, which will be valuable to the application on noise and vibration control of submarines and underwater pipes.

Info:

Periodical:

Edited by:

Paul P. Lin and Chunliang Zhang

Pages:

321-325

DOI:

10.4028/www.scientific.net/AMM.105-107.321

Citation:

J. Yan and J. Zhang, "Power Flow and Sound Radiation of a Submerged Cylindrical Shell with Internal Structural", Applied Mechanics and Materials, Vols. 105-107, pp. 321-325, 2012

Online since:

September 2011

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.