[1]
B. Abdi, , H. Mozafari, A. Ayob, Buckling behavior of general dome ends under external pressure using finite element analysis, Key Engineering Materials, 471-472, ( 2011), pp, 833-838.
DOI: 10.4028/www.scientific.net/kem.471-472.833
Google Scholar
[2]
P. Jasion, K. Magnucki, Elastic Buckling of barreled shell under external pressure, Thin-Walled Structures, 45, ( 2007), pp, 393-399.
DOI: 10.1016/j.tws.2007.04.001
Google Scholar
[3]
D. Mackenzie, D. Camilleri, R. Hamilton, , Design by analysis of ductile failure and buckling in torispherical pressure vessel heads, Thin-Walled Structures, 46, (2008), pp, 963-974.
DOI: 10.1016/j.tws.2008.01.033
Google Scholar
[4]
T. Hong, , J.G. Teng, Imperfection sensitivity and postbuckling analysis of elastic shell of revolution, Thin-Walled Structures, 46, (2008), pp, 1338-1350.
DOI: 10.1016/j.tws.2008.04.001
Google Scholar
[5]
B. Yu, L.F. Yang, Elastic modulus reduction method for limit analysis considering initial constant and proportional loading, Finite Element in Analysis and Design, 46, (2010), pp.1086-1092.
DOI: 10.1016/j.finel.2010.07.016
Google Scholar
[6]
A. Abdullah, S.M. Bedan, A.K. Ariffin, and M.M. Rahman, Fatigue Life Assessment for Metallic Structure: A Case Study of Shell Structure under Variable Amplitude Loading, Journal of Applied Sciences, 8, (2008), pp.1622-1631.
DOI: 10.3923/jas.2008.1622.1631
Google Scholar
[7]
Al-Qablan, Semi-analytical Buckling Analysis of Stiffened Sandwich Plates, Journal of Applied Sciences, 10, (2010), pp.2978-2988.
DOI: 10.3923/jas.2010.2978.2988
Google Scholar
[8]
N. Boumechra, D.E. Kerdal, The P-version Finite Element Method Using Bezier-Bernstein Functions for Frames, Shells and Solids, Journal of Applied Sciences, 6, (2006), pp.2334-2357.
DOI: 10.3923/jas.2006.2334.2357
Google Scholar
[9]
E.A. Thornton, Thermal buckling of plates and shells,. Applied Mech. Rev, 46 (1993): 485-506.
Google Scholar
[10]
M. Amabili, Shell-plate interaction in the free vibrations of circular cylindrical tanks partially filled with a liquid,: The artificial spring method. J. Sound Vibration, 199: (1997), 431–452.
DOI: 10.1006/jsvi.1996.0650
Google Scholar
[11]
J. Kochupillai, , N. Ganesan and C. Padmanabhan, A semi-analytical coupled finite element formulation for shells conveying fluids, Comput. Structures, 80: (2002), 271–286.
DOI: 10.1016/s0045-7949(02)00008-1
Google Scholar
[12]
J.G. Teng, Buckling of thin shells: Recent advances and trends,. Applied Mech. Re., 49: (1996), 263–274.
DOI: 10.1115/1.3101927
Google Scholar
[13]
J. Mackerle, Review finite elements in the analysis of pressure vessels and piping, an addendum: A bibliography (2001-2004),. Int. J. Pressure Vessels Piping, 82, (2005), 571-592.
DOI: 10.1016/j.ijpvp.2004.12.004
Google Scholar
[14]
M.F. Yang, C.C. Liang and C.H. Chen, A rotational shape design of externally pressurized torispherical dome ends under buckling constraints,. Comput. Structures, 43: (1992), 839-851.
DOI: 10.1016/0045-7949(92)90298-e
Google Scholar
[15]
B. Abdi, H. Mozafari, A. Ayob, Using Imperialist Competitive Algorithm to Find the Optimum Shape Design of Internally Pressurized Torispherical Dome Ends Based on Buckling Pressure, International Journal of Engineering, (IJE), Volume (4): Issue (5), (2010).
DOI: 10.4028/www.scientific.net/amm.110-116.956
Google Scholar