[1]
Y. Altintas, M. Eynian and H. Onozuka, Identification of dynamic cutting force coefficients and chatter stability with process damping, CIRP Annals Manufacturing Technology, Vol. 57 (2008), p.371–374.
DOI: 10.1016/j.cirp.2008.03.048
Google Scholar
[2]
Iman MalekiMehrabadi, MohammadNouri, RezaMadoliat, Investigating chatter vibration in deep drilling, including process damping and the gyroscopic effect, Int. J. of MTM, Vol. 49 (2009), p.939–946.
DOI: 10.1016/j.ijmachtools.2009.06.009
Google Scholar
[3]
Kambiz Haji Hajikolaei, Hamed Moradi, Gholamreza Vossoughi, Spindle speed variation and adaptive force regulation to suppress regenerative chatter in the turning process, Journal of Manufacturing Processes, Vol. 12 (2010), pp.106-115.
DOI: 10.1016/j.jmapro.2010.08.002
Google Scholar
[4]
M. H. Miguelez, L. Rubio, J. A. Loya, etc., Improvement of chatter stability in boring operations with passive vibration absorbers, International Journal of Mechanical Sciences, vol. 52 (2010), p.1376–1384.
DOI: 10.1016/j.ijmecsci.2010.07.003
Google Scholar
[5]
D.A. Axinte, An experimental analysis of damped coupled vibrations in broaching, Int. J. of MTM, Vol. 47 (2007), p.2182–2188.
DOI: 10.1016/j.ijmachtools.2007.04.006
Google Scholar
[6]
J. Gradisek, A. Baus, E. Govekar, F. Klocke, I. Grabec, Automatic chatter detection in grinding, Int. J. of MTM, Vol. 43 (2003), p.1397–1403.
DOI: 10.1016/s0890-6955(03)00184-6
Google Scholar
[7]
G. Totis RCPM—A new method for robust chatter prediction in milling, Int. J. of MTM, Vol. 49 ( 2009), pp.273-284.
DOI: 10.1016/j.ijmachtools.2008.10.008
Google Scholar
[8]
Ding Ye, Li Minzhu, Zhang Xiaojian, etc., Second-order full-discretization method for milling stability prediction, Int. J. of MTM, Vol. 50 (2010), p.926–932.
DOI: 10.1016/j.ijmachtools.2010.05.005
Google Scholar
[9]
O. Özşahin, H.N. Özgüven, E. Budak Analysis and compensation of mass loading effect of accelerometers on tool point FRF measurements for chatter stability predictions , Int. J. of MTM, Vol. 50 (2010), p.585–589.
DOI: 10.1016/j.ijmachtools.2010.02.002
Google Scholar
[10]
Min Wan, Wei-HongZhang, Jian-WeiDang, etc., A unified stability prediction method for milling process with multiple delays, Int. J. of MTM, Vol. 50 (2010), p.29–41.
Google Scholar
[11]
Li Zhongwei, Long Xinhua, Meng Guang, A method of semi-discrete on milling system stability Based on Magnus-Gaussian interruption. Journal of vibration and shock, Vol. 137 (2009), pp.69-73.
Google Scholar
[12]
Li Zhongqun, Liuqiang. Modeling and Simulation of Chatter Stability for Circular Milling, Journal of Mechanical Engineering, Vol. 46 (2010), pp.181-186.
Google Scholar
[13]
M. Zatarain, I. Bediaga, J. Munoa, R. Lizarralde, Stability of milling processes with continuous spindle speed variation: Analysis in the frequency and time domains, and experimental correlation, CIRP Annals - Manufacturing Technology, Vol. 57 (2008).
DOI: 10.1016/j.cirp.2008.03.067
Google Scholar
[14]
I. Mane, V. Gagnol, B.C. Bouzgarrou, etc. Stability-based spindle speed control during flexible workpiece high-speed milling, Int. J. of MTM, Vol. 48 (2008), p.184–194.
DOI: 10.1016/j.ijmachtools.2007.08.018
Google Scholar
[15]
Li Zheng, Liuqiang, Chatter Recognition System of NC Mashing Based on Analysis on Audio Signal. Manufacturing Technology & Machine Tool, No. 2 (2009), pp.16-18.
Google Scholar
[16]
N. C. Tsai, D. C. Chen, R. M. Lee, Chatter prevention for milling process by acoustic signal feedback, Int. J. of Advanced Manufacturing Technology, Vol. 32 (2009), p.1–9.
DOI: 10.1007/s00170-009-2245-y
Google Scholar
[17]
Yung C. Shin, Niranjan Subrahmanya. Automated Sensor Selection and Fusion for Monitoring and Diagnostics of Plunge Grinding. Trans. of ASME, J. of Manuf. Sci. & Eng., Vol. 130 (2008), pp.031014-11.
DOI: 10.1115/1.2927439
Google Scholar
[18]
E. Kuljanic, M. Sortino, G. Totis, Multisensor approaches for chatter detection in milling, Journal of Sound and Vibration, Vol. 312 (2008), p.672–693.
DOI: 10.1016/j.jsv.2007.11.006
Google Scholar
[19]
XU Xingqing, YU Yinghua. Cutting chatter online monitoring and control analysis, Journal of Vibration and Shock, Vol. 26 (2007), pp.130-135.
Google Scholar
[20]
Jang Yongtao, Zhang Chunliang. Application of wavelet transform in extracting characteris tics of cutting chatter, China Measurement Technology, Vol. 32 (2006), pp.7-8, 15.
Google Scholar
[21]
E. Kuljanic, G. Totis, M. Sortino, Development of an intelligent multisensor chatter detection system in milling, Mechanical Systems and Signal Processing, Vol. 23 (2009), p.1704–1718.
DOI: 10.1016/j.ymssp.2009.01.003
Google Scholar
[22]
Wang Shih-Ming, Luo Ming-Je, Lin Sheng-Yu et al., Application of wavelet transform on diagnosis and prediction of milling chatter. Chinese Journal of Mechanical Engineering, Vol. 20 (2007), pp.67-70.
DOI: 10.3901/cjme.2007.03.067
Google Scholar
[23]
Zhehe Yao, Deqing Mei, Zichen Chen On-line chatter detection and identfication based on wavelet and support vector machine. Journal of Materials Processing Technology, Vol. 210 (2010), p.713–719.
DOI: 10.1016/j.jmatprotec.2009.11.007
Google Scholar
[24]
Kang Jing, Feng Changjian, Yang Guotian. Application of DHMM Pattern Recognition Theory to Chatter Prediction, Mechanical Science and Technology for Aerospace Engineering, Vol. 27 (2008), pp.360-364.
Google Scholar
[25]
I.N. Tansel, M. Li, M. Demetgul, K. Bickraj, B. Kaya, B. Ozcelik, Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR). Int. J. of Advanced Manufacturing Technology, Vol. 33 (2010).
DOI: 10.1007/s00170-010-2838-5
Google Scholar