K − Bipartite Matching Extendability of Special Graphs

Article Preview

Abstract:

Let be a simple connected graph containing a perfect matching. For a positive integer , , is said to be bipartite matching extendable if every bipartite matching of with is included in a perfect matching of . In this paper, we show that bipartite matching extendability of some special graphs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4008-4012

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bondy J A, Murty U S R.: Graph Theory with Applications. London: Macmillan Press Ltd (1976).

Google Scholar

[2] Lováasz L, Plummer M D: Matching Theory. North Holland B V: Elsevier Science Publishers, (1985).

Google Scholar

[3] Aldred R E L, Holton D A, Lou D J, etal.: Discrete Mathematics Vol. 287(2004), pp.135-139.

Google Scholar

[4] Anunchuen N, Caccetta L: Australasian Journal of Combinatorics Vol. 9(1994), pp.153-168.

Google Scholar

[5] Plummer M D: Discrete Mathematics Vol. 31(1980), pp.201-210.

Google Scholar

[6] Plummer M D: Discrete Mathematics, Vol. 127(1994), pp.277-292.

Google Scholar

[7] Qinglin Yu: Journal of Graph Theory Vol. 16(1992), pp.349-353.

Google Scholar

[8] Jinjiang Yuan: Journal of Graph Theory Vol. 28(1998), pp.203-213.

Google Scholar

[9] Xiumei Wang, Zhenkun Zhang , Yixun Lin: Discrete Mathematics Vol. 308(2008), pp.5334-5341.

Google Scholar

[10] Quan Huan, Zhang X D: Henan Science Vol. 26(2008), pp.15-18, in Chinese.

Google Scholar

[11] Xiumei Wang, Zhenkun Zhang , Yixun Lin: Ars Combinatoria Vol. 90(2009), pp.295-305.

Google Scholar

[12] Zhihao Hui, Biao Zhao: Journal of Zhejiang University(Science Edition) Vol. 36(2009), pp.493-496, in Chinese.

Google Scholar

[13] Tutte W T: Journal of the London Mathematical Society Vol. 22(1947), pp.107-111.

Google Scholar