Reverse Path Planning for Flexible Needle in 2D Soft Tissue with Obstacles

Article Preview

Abstract:

In clinic it is of very practical significance to optimize the entry point and pose in path planning. We proposed a reverse path planning algorithm adopting multiform combined paths based on the improved kinematic model of flexible needle, and the objective function is established. Utilizing the reversibility of the path, we started from the target to optimize the whole path including the entry point and pose. Then we optimally calculated and simulated in the environment with obstacles. Results show that this algorithm effectively makes the needle steer clear of obstacles to reach the target precisely, and gains the entry point and pose at the same time, guaranteeing the optimal path.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4132-4137

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. J. Webster III, J. S. Kim, J. C. Noah, et al.: Nonholonomic Modeling of Needle Steering[J]. International Journal of Robotics Research Vol. 25 (2006), pp.509-525.

Google Scholar

[2] R. Alterovitz, K. Goldberg, A. M. Okamura: Planning for Steerable Bevel-tip Needle Insertion Through 2D Soft Tissue with Obstacles[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation (2005), pp.1652-1657.

DOI: 10.1109/robot.2005.1570348

Google Scholar

[3] R. Alterovitz, A. Lim, K. Goldberg, et al.: Steering Flexible Needles Under Markov Motion Uncertainty[C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2005), pp.120-125.

DOI: 10.1109/iros.2005.1544969

Google Scholar

[4] R. Alterovitz, M. Branicky and K. Goldberg: Constant-Curvature Motion Planning Under Uncertainty with Applications in Image-Guided Medical Needle Steering [J]. Algorithmic Foundation of Robotics VII (WAFR 2006), S. Akella et al. (Eds. ), STAR vol. 47, Springer-Verlag (2008).

DOI: 10.1007/978-3-540-68405-3_20

Google Scholar

[5] R. Alterovitz, T. Simeon, K. Goldberg: The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty[M]. Robotics: Science and Systems III (Proc. RSS 2007), W. Burgard, O. Brock, C. Stachniss, Eds. Cambridge, MA: MIT Press, (2008).

DOI: 10.15607/rss.2007.iii.030

Google Scholar

[6] W. Park, J. S. Kim, Y. Zhou, et al.: Diffusion-Based Motion Planning for a Nonholonomic Flexible Needle Model[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation (2005), pp.4600-4605.

DOI: 10.1109/robot.2005.1570829

Google Scholar

[7] W. Park, Y. Liu, Y. Zhou, et al. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map[J]. Robotica, Vol. 26 (2008), p.419–434.

DOI: 10.1017/s0263574708004475

Google Scholar

[8] V. Duindam, R. Alterovitz, S. Sastry, et al. Screw-Based Motion Planning for Bevel-Tip Flexible Needles in 3D Environments with Obstacles[C]. Proc. IEEE International Conference on Robotics and Automation (2008), pp.2483-2488.

DOI: 10.1109/robot.2008.4543586

Google Scholar

[9] V. Duindam, J. J. Xu, R. Alterovitz, et al. 3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics[C]. The Eighth International Workshop on the Algorithmic Foundations of Robotics (2008).

DOI: 10.1007/978-3-642-00312-7_33

Google Scholar

[10] J. J. Xu, V. Duindam, R. Alterovitz, et al. Motion Planning For Steerable Needles in 3D Environments with Obstacles Using Rapidly-Exploring Random Trees and Backchaining[C]. Proc. IEEE International Conference on Automation Science and Engineering (2008).

DOI: 10.1109/coase.2008.4626486

Google Scholar

[11] J. J. Xu, V. Duindam, R. Alterovitz, et al. Planning Fireworks Trajectories for Steerable Medical Needles to Reduce Patient Trauma[C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2009), pp.4517-4522.

DOI: 10.1109/iros.2009.5354787

Google Scholar

[12] S. Patil and R. Alterovitz. Interactive Motion Planning for Steerable Needles in 3D Environments with Obstacles[C]. 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (2010), pp.893-899.

DOI: 10.1109/biorob.2010.5625965

Google Scholar

[13] J.A. Engh, G. Podnar, D. Kondziolka, et al. Toward Effective Needle Steering in Brain Tissue[C]. Proceedings of the 28th IEEE EMBS Annual International Conference (2006), pp.559-562.

DOI: 10.1109/iembs.2006.260167

Google Scholar

[14] D. S. Minhas, J. A. Engh, M. M. Fenske. Modeling of Needle Steering via Duty-Cycled Spinning[C]. Proceedings of the 29th Annual International Conference of the IEEE EMBS (2007), pp.2756-2759.

DOI: 10.1109/iembs.2007.4352899

Google Scholar

[15] Y. D. Zhang and Y. J. Zhao. Kinematic Modeling of Bevel Tip Flexible Needle[C]. The 2010 International Conference on Intelligent Robotics and Applications (2010), Part II, LNAI 6425, pp.405-416.

DOI: 10.1007/978-3-642-16587-0_38

Google Scholar

[16] R. M. Murray, Z. Li, S. S. Sastry. A mathematical introduction to robotic manipulation[M]. USA: CRC Press (1994).

Google Scholar