Novel Method of MRI Medical Image Segmentation Combining Watershed Algorithm and WKFCM Algorithm

Abstract:

Article Preview

Aimed at the disadvantage of over-segmentation that traditional watershed algorithm segmented MRI images, a new method of MRI image segmentation was presented. First, through traditional watershed segmentation algorithm, the image was segmented into different areas, and then based on the improved kernel-clustering algorithm, we used Mercer-kernel to map average gray value of each area to high-dimensional feature space, making originally not displayed features manifested. In this way, we can achieve a more accurate clustering, and solve over-segmentation problem of watershed algorithm segmenting MRI images efficiently, thereby get better segmentation result. Experimental results show that the method of this paper can segment brain MRI images satisfactorily, and obtain clearer segmentation images.

Info:

Periodical:

Edited by:

Dongye Sun, Wen-Pei Sung and Ran Chen

Pages:

4518-4522

DOI:

10.4028/www.scientific.net/AMM.121-126.4518

Citation:

J. Q. Liu and K. Chen, "Novel Method of MRI Medical Image Segmentation Combining Watershed Algorithm and WKFCM Algorithm", Applied Mechanics and Materials, Vols. 121-126, pp. 4518-4522, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.