Optimal Motion Planning for the Teaching Experimental Mobile Manipulator

Article Preview

Abstract:

An optimal motion planning based on minimum principle is presented to address the motion problem of the mobile manipulator in a sort of experimental system. In view of the characteristic of the practical experimental apparatus, the model of the manipulator is deduced based on the kinetic analysis and mathematic method. An optimal control scheme is then investigated to deal with the optimization problem of the motion planning for the manipulator, so as to guarantee the demand of the teaching experiment. Simulation verifies the control performance of the optimal control scheme for the optimal motion planning of the manipulator, and it helps improve the teaching experiment effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-61

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Sadati, A. Babazadeh. Optimal control of robot manipulators with a new two-level gradient-based approach. Electrical Engineering, Vol. 88. (2006), p.383–393.

DOI: 10.1007/s00202-005-0304-4

Google Scholar

[2] T. Sugie,K. Fujimoto,Y. Kito. Obstacle avoidance of manipulators with rate constraint. IEEE Trans. Robotics and Automation , Vol. 19(1) (2003), pp.168-174.

DOI: 10.1109/tra.2002.807554

Google Scholar

[3] M. A. Ahmad, R. M. Taufika, R. Ismail, M. S. Ramli. Optimal Control with Input Shaping for Input Tracking and Vibration Suppression of a Flexible Joint Manipulator. European Journal of Scientific Research, Vol. 4(28) (2009), pp.583-589.

DOI: 10.1109/icca.2009.5410429

Google Scholar

[4] T. Oki, H. Nakanishi , K. Yoshida. Time-optimal manipulator control of a free-floating space robot with constraint on reaction torque. International Conference on Intelligent Robots and Systems. P. 2828-2833 (2008).

DOI: 10.1109/iros.2008.4650835

Google Scholar

[5] E. Terceiro, A. T. Fleury. Trajectories of moving sliders for the optimal control of a flexible manipulator. ABCM Symposium Series in Mechatronics. 2008, 3. 378-385.

Google Scholar

[6] R. J. Wai, M. C. Lee . Intelligent optimal control of single link flexible robot arm. IEEE Trans Industrial electronics., Vol. 51(1), (2004), p.201–220.

DOI: 10.1109/tie.2003.821895

Google Scholar

[7] T. Mita, S.H. Hyon, T. K. Nam. Analytical time optimal control solution for a two-link planar acrobat with initial angular momentum. IEEE Trans Robotic and Automation, Vol. 17(3). (2001), p.361–366.

DOI: 10.1109/70.938392

Google Scholar

[8] W. R. Doggett, W. C. Messner, J. N. Juang. Global minimization of the robot base reaction force during 3-D maneuvers [J]. IEEE Trans Robotic and Automation, Vol. 16(6). (2000), p.700–711.

DOI: 10.1109/70.897781

Google Scholar

[9] Z. Shiller, H. Chang, V. Wong. The practical implementation of time-optimal control for robotic manipulators. Robotics Computer Integrate Manufacturing, Vol. 12(1). (1996), p.29–39.

DOI: 10.1016/0736-5845(95)00026-7

Google Scholar

[10] A. Babazadeh, N. Sadati Optimal control of multiple-arm robotic systems using gradient method. Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, p.312–317(2004).

DOI: 10.1109/ramech.2004.1438937

Google Scholar

[11] Dwivedy S.K. Eberhard P Dynamic analysis of flexible manipulators literature review [J]. Mechanism and Machine Theory. Vol. 41(7), (2006), pp.749-777.

DOI: 10.1016/j.mechmachtheory.2006.01.014

Google Scholar

[12] A. Mohri, S. Furuno, M. Iwamura, M. Yamamoto. Sub-Optimal Trajectory Planning of Mobile Manipulator. International Conference on Intelligent Robots and Systems, pp.1271-1276 (2001).

DOI: 10.1109/robot.2001.932785

Google Scholar