Studies on Dynamic Mechanical Properties of Glass Fiber Reinforced Silica Aerogel

Article Preview

Abstract:

The stress-strain curves of glass-fiber reinforced silica aerogels (GRSA) are obtained by carrying out the quasi-static and split Hopkinson pressure bar (SHPB) experiments. The dynamic compression process of experimental materials are precisely controlled with the “frozen strain” method, and the effects of relative density, diameter and strain rate on dynamic compressive mechanical properties are discussed. Then the compressed samples are observed with scanning electron microcopy (SEM). Considering the Sherwood-Frost constitutive relation and contribution of gas to the strength of the material, the macroscopic phenomenological constitutive relation of this material is developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

709-717

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gorle B S K, Smirnova I, et al. Crystallization under supercritical condition in aerogel [J]. J Supercrit Fluids, 2008, 44(1): 78-84.

Google Scholar

[2] Desire'e L, Plata Yadira J, Briones Rebecca L, et al. Aerogel–platform optical sensors for oxygen gas [J]. Journal of Non-Crystalline Solids, 2004, 350: 326-335.

DOI: 10.1016/j.jnoncrysol.2004.06.046

Google Scholar

[3] Pajonk G M, Teichner S J. In Aerogels: proceedings of the first international symposium, [R]. Fricke J Ed Berlin: Springer Verlag, 1986, 193.

Google Scholar

[4] Zoran Novak, Petra Kotnik, Zeljko Knez. Preparation of WO3 aerogel catalysts using supercritical CO2 drying [J]. Journal of Non-Crystalline Solids, 2004, 350: 308-313.

DOI: 10.1016/j.jnoncrysol.2004.06.045

Google Scholar

[5] Tsou P. Proceedings of the Fourth International Symposium on Aerogels (ISA4) [J]. Non -Cryst. Solids, 1995, 186: 415.

Google Scholar

[6] H. Luo, H. Lu, N. Leventis. The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates [J]. Mech Time-Depend Mater. 2006, 10: 83–111.

DOI: 10.1007/s11043-006-9015-0

Google Scholar

[7] H. Luo, G. Churu. Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels [J]. J Sol-Gel Sci Technol. 2008, 48: 113-134.

DOI: 10.1007/s10971-008-1788-y

Google Scholar

[8] WANG Yanfei, et al. Fabrication and Properties of SiO2-Aerogel/Short Silica Fiber Porous Skeleton Composite [J]. Journal of the Chinese Ceramic Society, 2009, 37(2): 234-237.

Google Scholar

[9] Atul Katti,Nilesh Shimpi,Samit Roy. Chemical,physical,and mechanical characterization of isocyanate cross-Linked amine-modified silica aerogels [J].Chemistry of Materials, 18,285(2006).

DOI: 10.1021/cm0513841

Google Scholar

[10] YANGJie, et al. Deformation Behavior of Glass Fiber-Reinforced Aerogel Under Dynamic Compression [J]. Transactions of Beijing Institute of Technology, 2009, 29(9): 838-842.

Google Scholar

[11] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. (Cambridge, Cambridge University Press, 1997) p.153.

Google Scholar

[12] Sherwood JA, Frost CC. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading [J]. Polymer Eng Sci, 1992, 32 (16): 1138-1146.

DOI: 10.1002/pen.760321611

Google Scholar

[13] Hu Shisheng, Liu Jianfei, Wang Wu. Study of the Constitutive Relationship of Rigid Polyurethane Foam [J]. Acta Mechanica Sinica, 1998, 30(2): 151-156.

Google Scholar