Al Doped LiMn2O4 Prepared by a Solution Combustion Synthesis Using Acetate Salts as Raw Materials and Acetic Acid as Fuel

Article Preview

Abstract:

To improve the cyclability of spinel LiMn2O4, Al3+ doped LiAlxMn2−xO4 (x=0, 0.01, 0.05 and 0.10) materials are prepared using a solution combustion synthesis method using acetic salts as raw materials and acetic acid as fuel. Their phase structures are characterized by X-ray diffraction (XRD). Electrochemical performances of the materials are investigated by galvanostatic charge/discharge methods. XRD results reveal that the purity of the samples increases with increasing Al3+ content. Electrochemical experiments demonstrate that the charge/discharge cyclability of the LiAlxMn2-xO4 increases with increasing Al3+ content. Compared with the pristine LiMn2O4, the Al-doped LiAlxMn1−xO4 show the obviously improved cyclability, especially for the sample LiAl0.1Mn1.9O4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-212

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Winter, J. O. Besenhard, M. E. Spahr, et al: Adv. Mater. Vol. 10 (1998), p.725.

Google Scholar

[2] J. M. Tarascon and M. Armand: Nature Vol. 414 (2001), p.359.

Google Scholar

[3] V.G. Kumar, J.S. Gnanaraj, S. Ben-David, et al: Chem. Mater. Vol. 15 (2003), p.4211.

Google Scholar

[4] J.Y. Luo, Y.G. Wang, H.M. Xiong, et al: Chem. Mater. Vol. 19 (2007), p.4791.

Google Scholar

[5] W.J. Zhou, S.J. Bao, B.L. He, et al: Electrochim. Acta Vol. 51 (2006), p.4701.

Google Scholar

[6] L.F. Xiao, Y.Q. Zhao, Y.Y. Yang, et al: Electrochim. Acta Vol. 54(2008), p.545.

Google Scholar

[7] S. Chitra, P. Kalayani, T. Mohan, et al: J. Electroceram. Vol. 3-4 (1999), p.433.

Google Scholar

[8] M. Jayalakshmi, M. M. Rao, F. Scholz: Langmuir. Vol. 19 (2003), p.8403.

Google Scholar

[9] W. S. Yang, G. Zhang, J. Y. Xie, et al: J. Power Sources. Vol. 81-82 (1999), p.412.

Google Scholar

[10] Q. Zhong, A. Bonakdarpour, M. Zhang, et al: J. Electrochem. Soc. Vol. 144 (1997), p.205.

Google Scholar

[11] P. Barboux, J. M. Tarascon, F. K. Shokoohi: J. Solid State Chem. Vol. 94 (1991), p.185.

Google Scholar

[12] Y. S. Han, H. G., J. Power Sources Vol. 88 (2000), p.161.

Google Scholar

[13] W. Cho, W. Ra, J. Shirakawa, et al: Solid State Chem. Vol. 179 (2006), p.3534.

Google Scholar

[14] A.R. Han, T.W. Kim, D.H. Park, et al: Phys. Chem. C Vol. 111 (2007), p.11347.

Google Scholar

[15] J. Tu, X.B. Zhao, J. Xie, et al: Alloys Compd. Vol. 432(2007), p.313.

Google Scholar

[16] A. Yuan, L. Tian, W.M. Xu, et al: J. Power Sources Vol. 195 (2010), p.5032.

Google Scholar

[17] G.Y. Liu, D.W. Guo, J.M. Guo, et al: Key Eng. Mat. Vols. 368-372 (2008), p.293.

Google Scholar

[18] T. Kakuda, K. Uematsu, K. Toda, et al: J. Power Sources Vol. 167 (2007), p.499.

Google Scholar

[19] T.F. Yi, X.G. Hu, K. Gao: J. Power Sources Vol. 162 (2006), p.636.

Google Scholar

[20] N.N. Sinha, P. Ragupathy, H.N. Vasan, et al: Int. J. Electrochem. Sci. Vol. 3 (2008), p.691.

Google Scholar