Spartina alterniflora: Potential Bio-Energy Source for Biofuel Production in China

Article Preview

Abstract:

Spartina alterniflora can be widely used for fodder, sewage treatment and as a substantial source of bioactive material. As an invader, it strongly disturbs the structure and function of native ecosystem in China. However, it is also a promising bio-energy source. We analyzed the potential of S. alterniflora as a bio-energy source, including the superiority at both temporal and spatial scales, advantages in high photosynthetic efficiency and high productivity. Meanwhile, its exploitation for biofuel production was introduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-251

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. R Partridge. Spartina in New Zealand. New Zeal J Bot, 25(1987), 67–75.

Google Scholar

[2] J.C. Callaway, M.N. Josselyn. The introduction and spread of smooth cordgrass (Spartina alterniflora) in south San Francisco Bay. Estuaries, 15(1992), 18–26.

DOI: 10.2307/1352695

Google Scholar

[3] C.H. Chung, R.Z. Zhuo, G.W. Xu. Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecol Eng, 23(2004), 135–50.

DOI: 10.1016/j.ecoleng.2004.07.004

Google Scholar

[4] C.C. Daehler, D.R. Strong. Status, prediction, and prevention of introduced cordgrass (Spartina spp. ) invasions in Pacific estuaries, USA. Biol Conserv, 78(1996), 51–8.

DOI: 10.1016/0006-3207(96)00017-1

Google Scholar

[5] C.H. Chung. Forty years of ecological engineering with Spartina plantations in China. Ecol Eng, 27(2007), 49–57.

DOI: 10.1016/j.ecoleng.2005.09.012

Google Scholar

[6] T.G. Tang, W.J. Zhang. A discussion of ecological engineering benefits of Spartina spp. and its ecological invasion. Engineering Science, 5(2003), 15–20.

Google Scholar

[7] P. Qin, M. Xie, Y.S. Jiang. Spartina green food ecological engineering. Ecol Eng, 11(1998), 147–56.

Google Scholar

[8] SW Wan, P Qin, J Liu, et al. The positive and negative effects of exotic Spartina alterniflora in China. Ecological engineering, 35(2009), 444–452.

DOI: 10.1016/j.ecoleng.2008.05.020

Google Scholar

[9] P. Zuo, C.A. Liu, S.H. Zhao, et al. Distribution of Spartina plantations along the China's coast. Acta oceanologica sinica, 31(2009), 102–111.

Google Scholar

[10] P. Qin, C.H. Chung. Applied Studies on Spartina. The Oceanic Press, Beijing, pp.61-73, 105–108(1992).

Google Scholar

[11] R.L. Li, F.C. Shi, X.L. Zhang, et al. Quantitative characteristics and reproductive allocation study on reproductive ramets of Spartina alterniflora population in tidal-flat in Tianjin, China. Bulletin of Botanical Research, 27(2007), 99–106.

Google Scholar

[12] L.R. Pomeroy, R.G. Wiegert. The ecology of a salt marsh, in: R.G. Wiegert (Ed. ), L.R. Pomeroy, Springer-Verlag, New York, p.39–67(1981).

DOI: 10.1007/978-1-4612-5893-3

Google Scholar

[13] E.P. Odum, M.E. Fanning. Comparisons of fungi and bacterial biovolume in dead leaves of smooth cordgrass (Spartina alterniflora). Estuaries, 5(1973), 246–260.

DOI: 10.2307/1351748

Google Scholar

[14] P. Qin, M. Xie. A new drink enhancing organism immunocompetence. Chinese Journal of Nature, 13(1990), 226-227.

Google Scholar

[15] P. Qin, M. Xie, S.L. Chen. The dynamics of energy content in artificial vegetation of Spartina alterniflora in Binhai County, Jiangsu province. Journal of Nanjing University, 30(1994), 88–493.

Google Scholar

[16] Z.Y. Chen, B. Li, J.K. Chen. Some growth characteristics and relative competitive ability of invasive Spartina alterniflora and native Scirpus mariqueter. Biodiversity Science, 3(2005), 130–136.

DOI: 10.1360/biodiv.040122

Google Scholar

[17] H. Qing, Y.H. Yao, H.L. Li, et al. Utilization potential of Spartina alterniflora Loisel as a bio-energy source. Chinese Journal of Ecology, 27(2008), 1216–1220.

Google Scholar

[18] J. Liu, H. Zhou, P. Qin, et al. Effects of Spartina alterniflora salt marshes on organic carbon acquisition in intertidal zones of Jiangsu Province, China. Ecology Engneering, 30(2007), 240–249.

DOI: 10.1016/j.ecoleng.2007.01.010

Google Scholar

[19] G. Wang, P. Qin, S. Wan, et al. Ecological control and integral utilization of Spartina alterniflora. Ecological engineering, 32(2008), 249–255.

DOI: 10.1016/j.ecoleng.2007.11.014

Google Scholar

[20] H.G. Zhu, X.H. Chen, J.X. Tang. Pilot study on employing Spartina alterniflora asmaterial for producing biogas by biogasification. Transactions of the CSAE, 23(2007), 201–204.

Google Scholar

[21] Y.H.P. Zhang, L.R. Lynd. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 8(2004), 797–824.

DOI: 10.1002/bit.20282

Google Scholar

[22] G. Lissens, A.B. Thomsen, L.D. Baere, et al. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environmental Science & Technology, 38(2004), 3418–3424.

DOI: 10.1021/es035092h

Google Scholar

[23] D.P. Komilis, R.K. Ham. The effect of lignin and sugars to the aerobic decomposition of solid waste. Waste Management, 23(2003), 419–423.

DOI: 10.1016/s0956-053x(03)00062-x

Google Scholar

[24] M. Myint, N. Nirmalakhandan, R.E. Speece. Anaerobic fermentation of cattle manure: modeling of hydrolysis and acidogenesis. Water Research, 41(2007), 323–332.

DOI: 10.1016/j.watres.2006.10.026

Google Scholar

[25] H.W. Yen, D.E. Brune. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(2007), 130–134.

DOI: 10.1016/j.biortech.2005.11.010

Google Scholar

[26] Y.H.P. Zhang, Y. Ding, J.R. Mielenz, et al. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(2007), 214–223.

DOI: 10.1002/bit.21386

Google Scholar

[27] T. Eriksson, J. Borjesson, F. Tjerneld. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(2002), 353–364.

DOI: 10.1016/s0141-0229(02)00134-5

Google Scholar

[28] A. Mshandete, A. Kivaisi, M. Rubindamayugi, et al. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology, 95(2004), 19–24.

DOI: 10.1016/j.biortech.2004.01.011

Google Scholar

[29] Y. Yu, B. Park, S. Hwang. Co-digestion of lignocellulosics with glucose using thermophilic acidogens. Biochemical Engineering Journal, 18(2004), 225–229.

DOI: 10.1016/s1369-703x(03)00127-x

Google Scholar

[30] C. Wyman. Biomass ethanol: technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24(1999), 189–226.

DOI: 10.1146/annurev.energy.24.1.189

Google Scholar

[31] J. Rozema, T.J. Flowers. Crops for a salinized world. Science, 322(2008), 1478–1480.

DOI: 10.1126/science.1168572

Google Scholar

[32] Z. Abideen, R. Ansari, M. Ajmal Khan. Halophytes: Potential source of ligno-cellulosic biomass for ethanol production. Biomass and bioenergy, 35(2011), 1818–1822.

DOI: 10.1016/j.biombioe.2011.01.023

Google Scholar

[33] M.A. Khan, R. Ansari, H. Ali, et al. Nielsen. Panicum turgidum, potentially sustainable cattle feed alternative to maize for saline areas . Agriculture, Ecosystems & Environment, 129(2009), 542–5466.

DOI: 10.1016/j.agee.2008.10.014

Google Scholar

[34] S.G. Yang, J.H. Li, Z. Zheng, et al. Characterization of Spartina alterniflora as feedstock for anaerobic digestion. Biomass and Bioenergy, 33(2009a), 597–602.

DOI: 10.1016/j.biombioe.2008.09.007

Google Scholar

[35] S.G. Yang, J.H. Li, Z. Zheng, et al. Lignocellulosic structural changes of Spartina alterniflora after anaerobic mono- and co-digestion. International Biodeterioration & Biodegradation, 63(2009b), 569–575.

DOI: 10.1016/j.ibiod.2009.02.007

Google Scholar