[1]
J.R. Philip, and D.A. De Vries: Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union Vol. 38 (1957), pp.222-232.
DOI: 10.1029/tr038i002p00222
Google Scholar
[2]
DA, De Vries: Simultaneous transfer of heat and moisture in porous media (Trans Am Geophysc Union 1958), pp.909-916.
DOI: 10.1029/tr039i005p00909
Google Scholar
[3]
J. Even, H. Thomas: Heating unsaturated medium Geotechnique Vol 39(3)(1989), pp.455-70.
Google Scholar
[4]
T. Kanno, K.K., J. Yamagata: Moisture movement under a temperature gradient in highly campacted bentonite Engineering geology Vol 41 (1996), pp.287-300.
DOI: 10.1016/0013-7952(95)00039-9
Google Scholar
[5]
H.P. Huinink, L.P., M.A. J Michels, M. Prat: Drying processes in the presence of temperature gradients-Pore-scale modelling The European Physical Journal E Vol 9 (2002), pp.487-498.
DOI: 10.1140/epje/i2002-10106-1
Google Scholar
[6]
T, V. Genuctchen: A closed-form equation for predicting the hydraulic conductivity of an saturated soils Soil Science Soc. Am Journal Vol 44 (1980), pp.892-898.
DOI: 10.2136/sssaj1980.03615995004400050002x
Google Scholar
[7]
D. Gawin, C.E.M., B.A. Schrefler; Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature Mechanics of Cohesive-Frictional Materials Vol 4 (1999), pp.37-74.
DOI: 10.1002/(sici)1099-1484(199901)4:1<37::aid-cfm58>3.0.co;2-s
Google Scholar
[8]
E.R. Morales: Characterisation and thermo-hydro-mechanical behaviour of unsaturated Boom Clay: An experimental study, PhD Theses Universitat Politecnica' De Catalunya: Barcelona, (1999).
Google Scholar
[9]
V. Baroghel Bouny, M.M., T. Lassabatere, O. Coussy: Characterization and identification of equilibrium and transfer moisture properties for ordinary and high performance cementitious materials. Cement and Concrete Research Vol 29 (1999).
DOI: 10.1016/s0008-8846(99)00102-7
Google Scholar
[10]
Stanish M. A, Schajer G. S, and F. Kayihan: A mathematical model of drying for hygroscopic porous media AIChE Vol 32(8) (1986), pp.1301-1311.
DOI: 10.1002/aic.690320808
Google Scholar
[11]
J.R. Partington, in: Advanced Treatise on Physical Chemistry, Longmans, London, (1949).
Google Scholar
[12]
Z. Hui Wang, G.C.: Heat and mass transfer during low intensity convection drying. Chemical Engineering Science, vol 54 (1999), pp.3899-3908.
DOI: 10.1016/s0009-2509(98)00408-4
Google Scholar
[13]
Z. Harun, D.T. Gethin: Simulation and Modelling of drying phenomena using diffusivity terms, in Aerotech III Conference, (2009).
Google Scholar
[14]
Z. Zhang: Mechanism and mathematical model of heat and mass transfer during convective drying of porous materials. Heat Transfer Asian Research, Vol 28(5)(1999), pp.337-351.
DOI: 10.1002/(sici)1523-1496(1999)28:5<337::aid-htj1>3.0.co;2-9
Google Scholar
[15]
J. J Nijam, T.A.G.L., R.B. Keey, A high-temperature drying model for softwood timber. Chemical Engineering Science, 55 (2000), pp.3585-3598.
DOI: 10.1016/s0009-2509(00)00042-7
Google Scholar
[16]
K.K. Hansen: Unfired clay bricks-retention curves and liquid diffusivities Building Physics 2002-6th Nordic symposium (2002).
Google Scholar
[17]
Z. Harun, Gethin, D.T., Lewis, R.W., Combined Heat and Mass Transfer for Drying Ceramic(shell) Body, The International Journal of Multiphysics, Vol 2(1), (2008), pp.1-19.
DOI: 10.1260/175095408784300270
Google Scholar