Existence of Periodic Solutions for a Class of Second-Order Nonlinear Difference Systems

Article Preview

Abstract:

In this paper, by using critical point theory, a sufficient condition is obtained on the existence of periodic solutions for a class of nonlinear second-order difference systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1164-1169

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. P. Agarwal. Dfference Equations and Inequalities: Theory, Methods and Applications. Marcel Dekker, New York. 2000.

Google Scholar

[2] Z. Zhou, J. S. Yu and Z. M. Guo. Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A. 2004, 134: 1013-1022.

Google Scholar

[3] J. S. Yu, Z. M. Guo and X. F. Zou. Periodic solution of second order self-adjoint difference equation, J. London Math. Soc. 2005, 71: 146-160.

DOI: 10.1112/s0024610704005939

Google Scholar

[4] W. M. Tan, Z. Zhou. Existence of multiple periodic solutions for a class of nonlinear difference systems. Proceedings of the 7th Conference on Biological Dynamic System and Stability of Differential Equation, Vol. II. 2010, 686-692

Google Scholar

[5] M. Gil. Periodic solutions of abstract difference equation, Applied Math. E-Notes 2001, 1: 18-23.

Google Scholar

[6] Z. M. Guo and J. S. Yu, The existence of periodic and sub-harmonic solutions to quadratic second-order difference equation, J. London Math. Soc. 2003, 68:419-430.7

DOI: 10.1112/s0024610703004563

Google Scholar

[7] D. Jiang, D. O'Regan and R. P. Agarwal, Optimal existence theory for single and multiple positive periodic solutions to functional difference equations, Appl. Math. Lett. 2005, 162: 441-462.

DOI: 10.1016/j.amc.2003.12.097

Google Scholar

[8] X. C. Cai, J. S. Yu and Z. M. Guo. Existence of Periodic Solutions for Fourth-Order Difference Equations, Comput. Math. Appl. 2005, 50: 49-55.

DOI: 10.1016/j.camwa.2005.03.004

Google Scholar

[9] H. El-Owaidy and H.Y. Mohamed. The necessary and sufficient conditions of existence of periodic solutions of non-autonomous difference equations, Appl. Math. Comput. 2003, 136: 345-351.

DOI: 10.1016/s0096-3003(02)00048-6

Google Scholar

[10] S. Elaydi and R. Sacker. Global stability of periodic orbits of non-autonomous difference equations and population biology, J. Differential Equations 2005, 208: 258-273.

DOI: 10.1016/j.jde.2003.10.024

Google Scholar

[11] Y. Liu. On positive periodic solutions of functional difference equations with forcing term and applications, Comput. Math. Appl. 2008, 56: 2247-2255.

DOI: 10.1016/j.camwa.2007.12.017

Google Scholar

[12] F. M. Atici and G. S. Guseinov. Positive periodic solutions for nonlinear difference equations with periodic coefficients, J.Math. Anal. Appl.. 1999, 232:166-182.

DOI: 10.1006/jmaa.1998.6257

Google Scholar

[13] P. H. Rabinowitz. Minimax methods in critical point theory with applications to differential. CBMS Issues Math. Ed. 65. 1986.

Google Scholar