[1]
V.N. Vapnik, , 1995. The Nature of Statistical Learning Theory, Springer.
Google Scholar
[2]
J.A.K. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle, Weighted least squares support vector machines: robustness and sparse approximation, Neurocomputing 48 (1–4), 85–105 (2002. ).
DOI: 10.1016/s0925-2312(01)00644-0
Google Scholar
[3]
Wentong Cui, Xuefeng Yan. 2009. Adaptive weighted least square support vector machine regression integrated withoutlier detection and its application in QSAR, Chemometrics and Intelligent Laboratory Systems 98 : 130-135.
DOI: 10.1016/j.chemolab.2009.05.008
Google Scholar
[4]
Jin-Tsong Jeng , Chen-ChiaChuang, Chin-WangTao. 2010. Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers, Neurocomputing 73: 1686-1693.
DOI: 10.1016/j.neucom.2009.12.028
Google Scholar
[5]
Diego Martinez Prata, Marcio Schwaab, Enrique Luis Lima, 2010. Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor, Chemical Engineering Science, 65(17): 4943-4954.
DOI: 10.1016/j.ces.2010.05.017
Google Scholar
[6]
Prata, D. M., Pinto, J.C., Lima, E.L., 2008. Comparative analysis of robust estimators on nonlinear dynamic data reconciliation,. Computer-Aided Chemical Engineering. 25: 501- 506.
DOI: 10.1016/s1570-7946(08)80088-0
Google Scholar
[7]
Özyurt, D.B., Pike, R.W., 2004. Theory and practice of simultaneous data reconciliation and gross error detection for chemical process,. Computers and Chemical Engineering . 28: 381- 402.
DOI: 10.1016/j.compchemeng.2003.07.001
Google Scholar
[8]
Suykens, J. A. K., & Vandewalle, J. 1999. Least squares support vector machine classifiers,. Neural Process Letter, 9(3), 293-300.
Google Scholar
[9]
Suykens, J. A. K., Lukas, L., & Van Dooren, P. et al. 1999. Least squares support vector machine classifiers: A large scale algorithm,. In Proceedings of European conference of circuit theory design . pp.839-842.
Google Scholar
[10]
Wen Wen, Zhifeng Hao , Xiaowei Yang. 2008. A heuristic weight-setting strategy and iteratively updating algorithm forweighted least-squares support vector regression,. Neurocomputing 71: 3096-3103.
DOI: 10.1016/j.neucom.2008.04.022
Google Scholar
[11]
Yuh-Jye Lee, Wen-Feng Hsieh, and Chien-Ming Huang, 2005. ε-SSVR: A Smooth Support Vector Machine forε-Insensitive Regression,. IEEE Transactions on knowledge and data Engineering, 17(5) : 678-684.
DOI: 10.1109/tkde.2005.77
Google Scholar
[12]
Chen-Chia Chuang, Zne-Jung Lee, 2011. Hybrid robust support vector machines for regression with outliers,. Applied Soft Computing 11: 64-72.
DOI: 10.1016/j.asoc.2009.10.017
Google Scholar