[1]
Linnhoff B, Hindmarsh E. The pinch design method for heat exchange networks. Chemical Engineering Science, 1983, 38(5): 745-763.
DOI: 10.1016/0009-2509(83)80185-7
Google Scholar
[2]
Yee T F, Grossmann I E. Simultaneous optimization models for heat integration-II: Heat exchange network synthesis. Computers and Chemical Engineering, 1990, 14: 1165-1184.
DOI: 10.1016/0098-1354(90)85010-8
Google Scholar
[3]
Dolan W B, Cummings P T, Levan M D. Process optimization via simulated annealing Application to network design [J]. AIChE J., 1989, 35(5): 725-736.
DOI: 10.1002/aic.690350504
Google Scholar
[4]
Lewin D R. A generalized method for HEN synthesis using stochastic optimization II: The synthesis of cost optimal network. Computers and Chemical Engineering, 1998, 22(10): 1387-1405.
DOI: 10.1016/s0098-1354(98)00221-x
Google Scholar
[5]
Chen Guimin, Jia Jianyuan, Han Qi. Study on the strategy of Decreasing Inertia Weight in Particle Swarm Optimization Algorithm. JOURNAL OF XI'AN JIAO TONG UNIVERSITY. 2006, 40(1): 53-61.
DOI: 10.1109/wcica.2006.1713058
Google Scholar
[6]
Yee T F, Grossmann I E. Simultaneous optimization models for heat integration—I. Area and energy targeting and modeling of multi-stream exchanges [J]. Computers and Chemical Engineering,1990,14(10):1151-1164.
DOI: 10.1016/0098-1354(90)85009-y
Google Scholar
[7]
XIA Tao, JIA Tao, CHENG Jie. A novel approach for simultaneous synthesis of a heat exchanger network via swarm intelligent optimization. Journal of Beijing University of Chemical Technology (Natural Science), 2009, 36(1): 97-101.
Google Scholar
[8]
Ahmad S. Heat exchanger networks: Cost trade-offs in energy and capital [D]. Manchester: UMIDT. (1985).
Google Scholar
[9]
Nielsen J S, Hansen M W, Joergensen S B. Heat exchanger network modeling framework for optimal design and retrofitting [J]. Computers & Chemical Engineering. 1986, 20: s249-s254.
DOI: 10.1016/0098-1354(96)00052-x
Google Scholar