[1]
J. Z. Liu, Y. Q. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices. Linear Algebra Appl. 389 (2004) 365-380.
DOI: 10.1016/j.laa.2004.04.012
Google Scholar
[2]
J.Z. Liu, Y.Q. Huang, F.Z. Zhang, The Schur complements of generalized doubly diagonally dominant matrices, Linear Algebra Appl., 378(2004)231-224.
DOI: 10.1016/j.laa.2003.09.012
Google Scholar
[3]
J.Z. Liu, F.Z. Zhang, Disc separation of the Schur complement of diagonally dominant matrices and determinantal bounds, SIAM J. Matrix Anal. Appl., 3(2006) 665-674.
DOI: 10.1137/040620369
Google Scholar
[4]
J.Z. Liu, Some inequalities for singular values and eigenvalues of generalized Schur complements of products of matrices, Linear Algebra Appl., 286(1999)209-221.
DOI: 10.1016/s0024-3795(98)10156-8
Google Scholar
[5]
J.Z. Liu, Li Zhu, Aminimum Principle and Estimates of the eigenvalues for Schur complements positive semidefinite hermitian matrices, Linear Algebra Appl., 265(1997)123-145.
DOI: 10.1016/s0024-3795(96)00595-2
Google Scholar
[6]
R. Smith, Some interlacing properties of the Schur complement Theory: Proceedings of the Third Auburn Matrix Theory Conference, Auburn University, Auburn, Alabamment of a Hermitian matrix, Linear Algebra Appl., 177(1992)137-144.
DOI: 10.1016/0024-3795(92)90321-z
Google Scholar
[7]
G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., Johns Hopkins University Press, Baltimore, (1996).
Google Scholar
[8]
Yong-zhong Song, The convergence of block AOR iterative methods, Appl. Math., 6(1993) 39-45.
Google Scholar
[9]
A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical sciences, Academic Press, New York, (1979).
Google Scholar
[10]
C. R. Johnson, Inverse M-matrices, Linear Algebra Appl. 47(1982)195-216.
Google Scholar
[11]
D. Carlson, T. Markham, Schur complements on diagonally dominant matrices, Czech. Math. J. 29(104) (1979)246-251.
DOI: 10.21136/cmj.1979.101601
Google Scholar
[12]
B. Li, M. Tsatsomeros, Doubly diagonally dominant matrices, Linear Algebra Appl. 261 (1997) 221-235.
DOI: 10.1016/s0024-3795(96)00406-5
Google Scholar
[13]
K. D. Ikramov, Invariance of the Brauer diagonal dominance in gaussian elimination, Moscow Univ. Comput. Math. Cybernet. ( N2 )(1989)91-94.
Google Scholar
[14]
D. Calson, T. Markham, Schur complements on diagonally dominant matrices, Czech. Math., J. 29(104) (1979)246-251.
DOI: 10.21136/cmj.1979.101601
Google Scholar
[15]
R. Smith, Some interlacing properties of the Schur complement Theory: Proceedings of the Third Auburn Matrix Theory Conference, Auburn University, Auburn, Alabamment of a Hermitian matrix, Linear Algebra Appl. 177 (1992) 137-144.
DOI: 10.1016/0024-3795(92)90321-z
Google Scholar
[16]
David G. Feingold, Richard S. Varga, Block diagonally dominant matrices and generalizations of the Gerschgorin Circle Theorem, Pacific J. Math., 12(1962)1241-1250.
DOI: 10.2140/pjm.1962.12.1241
Google Scholar
[17]
Ben Polman, Incomplete blockwise factorizations of (block) H-matrices, Linear Algebra Appl., 90(1987)119-132.
DOI: 10.1016/0024-3795(87)90310-7
Google Scholar
[18]
F. Robert, Block H-matrices et convergence des methods iterations classiques par blocs, Linear Algebra Appl., 2(1969), 223-265.
DOI: 10.1016/0024-3795(69)90029-9
Google Scholar
[19]
L. Yu. Kolotilina, Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices, Linear Algebra Appl., 359(2003)133-159.
DOI: 10.1016/s0024-3795(02)00422-6
Google Scholar