Wide Spectrum Absorption of CuGaS2 with Intermediate Bands

Article Preview

Abstract:

The intermediate bands materials CuGa1-xQxS2 (Q = Ge, Sn) were investigated, and the narrow half-filled intermediate bands were successfully introduced into the chalcopyrite CuGaS2 when Ga3+ ion were partially replaced by Ge4+(Sn4+) impurities. The absorption edge of CuGa1-xQxS2 red shifts greatly with the increasing in the doping content due to the form of Ge-4s (Sn-5s) and S-3p hybridization orbits intermediate band, even small Q-doping content(2mol %), considerable red shifts are still achieved. CuGa1-xQxS2 (Q = Ge, Sn) with IBs extend the range of solar spectrum and could be the excellent candidates for the theoretical predictions of enhanced solar cell efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1558-1561

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chopin, C. Fuller and G. Pearson: J. Appl. Phys. Vol. 25 (1954), pp.676-677.

Google Scholar

[2] W. Shockley and H. J. Queisser: J. Appl. Phys. Vol. 32 (1961), p.510.

Google Scholar

[3] G. L. Araujo and A. Marti: Solar Energy Mater. Solar Cells Vol. 33 (1994), p.213.

Google Scholar

[4] A. Luque and A. Marti: Phys. Rev. Lett. Vol. 78 (1997), p.5014.

Google Scholar

[5] C. Tablero and P. Wahnon: Appl. Phys. Lett. Vol. 82 (2003), p.151.

Google Scholar

[6] A. Martí, D. F. Marrón and A. Luque: J. Appl. Phys. Vol. 103 (2008), p.073706.

Google Scholar

[7] K. M. Yu, W. Walukiewicz, J. W. Ager,D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp and E. E. Haller: Appl. Phys. Lett. Vol. 88 (2006), p.092110.

DOI: 10.1063/1.2181627

Google Scholar

[8] K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, P. Becla: Phys. Rev. Lett. Vol. 91 (2003), p.246403.

DOI: 10.1103/physrevlett.91.246403

Google Scholar

[9] C. H. Ho: J. Mater. Chem. Vol. 21 (2011), pp.10518-10524.

Google Scholar

[10] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi: Prog. Photovolt Vol. 16 (2008), p.235.

Google Scholar

[11] C. H. Tsaia, J. M. Ting and R. R. Wang: Acta Mater. Vol. 59 (2011), pp.349-354.

Google Scholar

[12] D. Young, J. Keane, A. Duda, J. AbuShama, C. Perkins, M. Romero and R. Noufi: Prog. Photovolt Vol. 11 (2003), p.535.

Google Scholar

[13] T. Ohashi, Y. Hashimoto and K. Ito: Solar Energy Materials & Solar Cells Vol. 67 (2001), pp.225-230.

Google Scholar

[14] S. Siebentritt: Thin Solid Films Vol. 403-404 (2002), pp.1-8.

Google Scholar

[15] A. Martin, K. E. Green, Y. Hishikawa and W. Warta: Prog. Photovolt Vol. 18 (2010), pp.144-150.

Google Scholar

[16] P. E. Blöchl: Phys. Rev. B Vol. 50 (1994), p.17953.

Google Scholar

[17] J. Heyd, G. E. Scuseria and M. Ernzerhof: J. Chem. Phys. Vol. 118 (2003), p.8207.

Google Scholar

[18] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[19] L. D. Partain, R. A. Schneider and L. F. Donaghey: J. Appl. Phys. Vol. 57 (1985), pp.5056-5068.

Google Scholar

[20] A. P. Finlayson, V. N. Tsaneva, L. Lyons, M. Clark and B. A. Glowacki: Phys. Status Solidi A Vol. 203 (2006), p.327.

Google Scholar