[1]
J. L. S. Humphrey, A.F. Seibert and R. A. Koort, Separation technologies: advances and priorities, U.S. Department of Energy Report, DOE/ID/12920-1 (1991).
DOI: 10.2172/5968081
Google Scholar
[2]
F. Smaïli, V. S. Vassiliadis, and D. I. Wilson, Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning, Energy & Fuels, 15 (2001) 1038-1056.
DOI: 10.1021/ef010052p
Google Scholar
[3]
G. T. Polley, D. I. Wilson, B. L. Yeap, and S. J. Pugh, Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains, Applied Thermal Engineering, 22 (2002) 777-788.
DOI: 10.1016/s1359-4311(02)00023-6
Google Scholar
[4]
B. L. Yeap, D. I. Wilson, G. T. Polley, and S. J. Pugh, Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models, Chemical Engineering Research and Design, 82 (2004) 53-71.
DOI: 10.1205/026387604772803070
Google Scholar
[5]
E. M. Ishiyama, W. R. Paterson, and D. I. Wilson, Optimum cleaning cycles for heat transfer equipment undergoing fouling and ageing, Chemical Engineering Science, 66 (2011) 604-612.
DOI: 10.1016/j.ces.2010.10.036
Google Scholar
[6]
C. B. Panchal, and E. P. Huangfu, Effects of mitigating fouling on the energy efficiency of crude-oil distillation, " Heat Transfer Engineering, Heat Transfer Engineering, 21 (2000) 3-9.
DOI: 10.1080/014576300270843
Google Scholar
[7]
A. Heins, R. Veiga, C. Ruiz, A. Riera, Fouling monitoring and cleaning optimisation in a heat exchanger network of a crude distillation unit, in Heat Exchanger Fouling and Cleaning - Challenges and Opportunities, H. Müller-Steinhagen, M. Malayeri and A. P. Watkinson (Eds. ), Tomar, Portugal, 2007, pp.456-464.
DOI: 10.1080/01457630601064397
Google Scholar
[8]
E. M. Ishiyama, F. Coletti, S. Macchietto, W. R. Paterson, D. I. Wilson, Impact of deposit ageing on thermal fouling: lumped parameter model, AIChE Journal, 56 (2010) 531-545.
DOI: 10.1002/aic.11978
Google Scholar
[9]
F. Coletti, E. M. Ishiyama, W. R. Paterson, D. I. Wilson, S. Macchietto, Impact of deposit aging and surface roughness on thermal fouling: distributed model, AIChE Journal, 56 (2010) 3257-3273.
DOI: 10.1002/aic.12221
Google Scholar
[10]
ESDU, Heat exchanger fouling in preheat train of a crude oil distillation unit, ESDU Data Item No. 00016, ESDU International plc, London, UK, (2000).
Google Scholar
[11]
H. Müller-Steinhagen, Fouling of heat exchanger surfaces, Chemistry and Industry, 6 (1995) 171-175.
Google Scholar
[12]
A. J. Waters, C. G. Akinradewo, D. Lamb, Fouling: implementation of a crude preheat train performance monitoring application at the irving oil refinery, in Heat Exchanger Fouling and Cleaning VIII, H. Müller-Steinhagen, M. Malayeri and A. P. Watkinson (Eds. ), Schladming, Austria, 2009, pp.33-38.
DOI: 10.1080/01457632.2013.737751
Google Scholar
[13]
T. R. Bott, Fouling of Heat Exchangers, Elsevier, New York, (1995).
Google Scholar
[14]
A. P. Watkinson, and D. I. Wilson, Chemical reaction fouling: A review, Experimental Thermal and Fluid Science, 14 (1997) 361-374.
DOI: 10.1016/s0894-1777(96)00138-0
Google Scholar
[15]
D. I. Wilson, G. T. Polley, and S. J. Pugh, Mitigation of crude oil preheat train fouling by design, Heat Transfer Engineering, 23 (2002) 24-37.
DOI: 10.1080/014576302753249589
Google Scholar
[16]
D. I. Wilson, and G. T. Polley, Mitigation of refinery preheat train fouling by nested optimisation, in Advances in Refinery Fouling Mitigation Session No. 46, AIChE, Houston, 2000, pp.287-294.
Google Scholar
[17]
N. Epstein, Thinking about heat transfer fouling: A 5 _ 5 matrix, Heat Transfer Eng. 4 (1983) 43–56.
DOI: 10.1080/01457638108939594
Google Scholar
[18]
W. A. Ebert, and C. B. Panchal, Analysis of Exxon crude-oil-slip-stream coking data", in fouling mitigation of Industrial heat exchangers, in Fouling Mitigation of Industrial Heat Exchangers, C. B. Panchal, T. R. Bott, E. F. C. Somerscales and S. Toyama (Eds. ), New York, 1995, pp.451-460.
DOI: 10.1016/b978-044482186-7/50018-x
Google Scholar
[19]
G. Dickakian, and S. Seay, Asphaltene precipitation primary crude exchanger fouling mechanism, Oil Gas Journal, 86 (1988) 47-50.
Google Scholar
[20]
J. D. Knudesen, D. Lin, and W. A. Ebert, The determination of the threshold fouling curve for a crude oil, in Understanding Heat Exchanger Fouling and its Mitigation, T. R. Bott, L. E. Melo, C. B. Panchal, and E. F. C. Somerscales (Eds. ), New York, 1999, pp.265-272.
Google Scholar
[21]
R. S. T. Ma, and N. Epstein, Optimum cycles for falling rate processes, Canadian Journal of Chemical Engineering, 59 (1981) 631-633.
DOI: 10.1002/cjce.5450590512
Google Scholar
[22]
S. Macchietto et al., Fouling in crude oil preheat trains: a systematic solution to an old problem, in Heat exchanger Fouling and Cleaning VIII, H. Müller-Steinhagen, M. Malayeri and A. P. Watkinson (Eds. ), Schladming, Austria, 2009, pp.1-14.
DOI: 10.1080/01457632.2013.737751
Google Scholar
[23]
T. Pogiatzis, E. M. Ishiyama, W. R. Paterson, V. S. Vassiliadis, and D. I. Wilson, Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing, Applied Energy (2011), in press.
DOI: 10.1016/j.apenergy.2011.01.063
Google Scholar
[24]
V. R. Radhakrishnan, et al., Heat exchanger fouling model and preventive maintenance scheduling tool, Applied Thermal Engineering, 27 (2007) 2791-2802.
DOI: 10.1016/j.applthermaleng.2007.02.009
Google Scholar
[25]
I. A. Wiehe, The chemistry of petroleum fouling, in Refinery Processing, AIChE, New York, 2001, pp.204-210.
Google Scholar
[26]
I. A. Wiehe, and R. J. Kennedy, compatibility model and crude oil incompatibility, Energy and Fuels, 14 (2000) 56-59.
DOI: 10.1021/ef990133+
Google Scholar
[27]
F. Smaïli, V. S. Vassiliadis, and D. I. Wilson, Optimization Of Cleaning Schedules in Heat Exchanger Networks subject To Fouling, Chemical Engineering Commun. 189 (2002) 1517.
DOI: 10.1080/00986440214999
Google Scholar
[28]
F. S. Liporace, and S. G. De Oliveira, Real time fouling diagnosis and heat exchanger performance, Heat Transfer Engineering, 28 (2007) 193-201.
DOI: 10.1080/01457630601064595
Google Scholar
[29]
D. I. Wilson, E. M. Ishiyama, W. R. Paterson, and A. P. Watkinson, Ageing: looking back and looking forward, in Heat Exchanger Fouling and Cleaning VIII, H. Müller-Steinhagen, M. Malayeri and A. P. Watkinson (Eds. ), Schladming, Austria, 2009, pp.221-230.
DOI: 10.1080/01457632.2013.737751
Google Scholar
[30]
E. M. Ishiyama, A. V. Heins, W. R. Paterson, L. Spinelli, and D. I. Wilson, Scheduling cleaning in a crude oil preheat train subject to fouling: Incorporating desalter control, Applied Thermal Engineering, 30 (2010) 1852-1862.
DOI: 10.1016/j.applthermaleng.2010.04.027
Google Scholar
[31]
Ishiyama, E. M., W. R. Paterson, and D. I Wilson, Platform for Techno-economic Analysis of Fouling Mitigation Options in Refinery Preheat Trains, Energy & Fuels, 23 (2008) 1323-133.
DOI: 10.1021/ef8005614
Google Scholar
[32]
W. L. Nelson, Fouling of heat exchangers, Refiner Nat Gas Manufacturer, 13 (1934) 271–276.
Google Scholar
[33]
W. L. Nelson, Fouling of heat exchangers II, Refiner Nat Gas Manufacturer, 13 (1934) 292–298.
Google Scholar
[34]
D. I. Wilson, Challenges in cleaning: Recent developments and future prospects, Heat Transfer Engineering, 26 (2005) 51-59.
DOI: 10.1080/01457630590890175
Google Scholar
[35]
F. Smaïli, V.S. Vassiliadis, VS and D. I. Wilson, Long-term scheduling of cleaning of heat exchanger networks: comparison of outer approximation-based solutions with a backtracking threshold accepting algorithm, Chemical Engineering Research and Design, 80 (2002).
DOI: 10.1205/026387602760312764
Google Scholar
[36]
L. O. de Oliveira Filho, F. S. Liporace, M. E. Queiroz, and Costa, Investigation of an alternative operating procedure for fouling management in refinery crude preheat trains, Applied Thermal Engineering, 29 (2009) 3073-3080.
DOI: 10.1016/j.applthermaleng.2009.04.012
Google Scholar
[37]
F. Smaïli et al., Optimization of scheduling of cleaning in heat exchanger networks subject to fouling: sugar industry case study, Food and Bioproducts Processing, 77 (1999) 159-164.
DOI: 10.1205/096030899532312
Google Scholar
[38]
S. Sanaye, and B. Niroomand, Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule, Energy Conversion and Management, 48 (2007) 1450-146.
DOI: 10.1016/j.enconman.2006.12.006
Google Scholar
[39]
E. Casado, Model optimizes exchanger cleaning, Hydrocarbon Process, 69 (1990) 71 -76.
Google Scholar
[40]
J. H. Lavaja, and M. J. Bagajewicz, On a new MILP model for the planning of heat-exchanger network cleaning, Industrial & Engineering Chemistry Research, 43 (2004) 3924-3938.
DOI: 10.1021/ie034178g
Google Scholar
[41]
M. Markowski, and K. Urbaniec, Optimal cleaning schedule for heat exchangers in a heat exchanger network, Applied Thermal Engineering, 25 (2005) 1019-1032.
DOI: 10.1016/j.applthermaleng.2004.06.025
Google Scholar
[42]
C. Rodriguez, and R. Smith, Optimization of Operating Conditions for Mitigating Fouling in Heat Exchanger Networks, Chemical Engineering Research and Design, 85 (2007) 839-85.
DOI: 10.1205/cherd06046
Google Scholar
[43]
M. C. Georgiadis, and L. G. Papageorgiou, Optimal energy and cleaning management in heat exchanger networks under fouling, Chemical Engineering Research and Design, 78 (2000) 168-179.
DOI: 10.1205/026387600527194
Google Scholar
[44]
M. C Georgiadis, L. G. Papageorgiou, and S. Macchietto, Optimal cleaning policies in heat exchanger networks under rapid fouling, Industrial & Engineering Chemistry Research, 39 (2000) 441-454.
DOI: 10.1021/ie990166c
Google Scholar
[45]
J. H. Lavaja, and M. J. Bagajewicz, On a new MILP model for the planning of heat-exchanger network cleaning. Part II: Throughput loss considerations, Industrial & Engineering Chemistry Research, 44 (2005) 8046-8056.
DOI: 10.1021/ie0503186
Google Scholar
[46]
J. H. Lavaja, and M. J. Bagajewicz, On a new MILP model for the planning of heat-exchanger network cleaning. Part III: Multiperiod cleaning under uncertainty with financial risk management, Industrial & Engineering Chemistry Research, 44 (2005).
DOI: 10.1021/ie050319y
Google Scholar
[47]
F. Coletti, and S. Macchietto, A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling, Industrial and Engineering Chemistry Research, 50 (2011) 4515-4533.
DOI: 10.1021/ie901991g
Google Scholar
[48]
Ishiyama, E. M., W. R. Paterson, and D. I. Wilson, Exploration of alternative models for the aging of fouling deposits, AIChE Journal (2011), in press.
DOI: 10.1002/aic.12514
Google Scholar