A Review of Optimal Scheduling Cleaning of Refinery Crude Preheat Trains Subject to Fouling and Ageing

Article Preview

Abstract:

Refinery crude preheat train (CPHT) is prone to fouling and ageing effects due to the complexity of processed crude feedstock preheated prior to distillation. This has serious implications on the thermal and hydraulic performance of the CPHT. As a result, efficient performance of crude preheat trains is compromised and as such, optimal scheduling cleaning operations are required to restore performance. In this paper, we attempt to review the subject of fouling/ageing control and mitigation in crude preheat train network by optimal scheduling cleaning approach. Three prominent optimisation techniques/models namely Mathematical Models (Mixed integer linear programming (MILP) and Mixed integer non-linear programming (MINLP) models); Artificial Intelligence (AI) Models; and Heuristic Techniques used for achieving optimal cleaning are outlined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

643-651

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. L. S. Humphrey, A.F. Seibert and R. A. Koort, Separation technologies: advances and priorities, U.S. Department of Energy Report, DOE/ID/12920-1 (1991).

DOI: 10.2172/5968081

Google Scholar

[2] F. Smaïli, V. S. Vassiliadis, and D. I. Wilson, Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning, Energy & Fuels, 15 (2001) 1038-1056.

DOI: 10.1021/ef010052p

Google Scholar

[3] G. T. Polley, D. I. Wilson, B. L. Yeap, and S. J. Pugh, Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains, Applied Thermal Engineering, 22 (2002) 777-788.

DOI: 10.1016/s1359-4311(02)00023-6

Google Scholar

[4] B. L. Yeap, D. I. Wilson, G. T. Polley, and S. J. Pugh, Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models, Chemical Engineering Research and Design, 82 (2004) 53-71.

DOI: 10.1205/026387604772803070

Google Scholar

[5] E. M. Ishiyama, W. R. Paterson, and D. I. Wilson, Optimum cleaning cycles for heat transfer equipment undergoing fouling and ageing, Chemical Engineering Science, 66 (2011) 604-612.

DOI: 10.1016/j.ces.2010.10.036

Google Scholar

[6] C. B. Panchal, and E. P. Huangfu, Effects of mitigating fouling on the energy efficiency of crude-oil distillation, " Heat Transfer Engineering, Heat Transfer Engineering, 21 (2000) 3-9.

DOI: 10.1080/014576300270843

Google Scholar

[7] A. Heins, R. Veiga, C. Ruiz, A. Riera, Fouling monitoring and cleaning optimisation in a heat exchanger network of a crude distillation unit, in Heat Exchanger Fouling and Cleaning - Challenges and Opportunities, H. Müller-Steinhagen, M. Malayeri and A. P. Watkinson (Eds. ), Tomar, Portugal, 2007, pp.456-464.

DOI: 10.1080/01457630601064397

Google Scholar

[8] E. M. Ishiyama, F. Coletti, S. Macchietto, W. R. Paterson, D. I. Wilson, Impact of deposit ageing on thermal fouling: lumped parameter model, AIChE Journal, 56 (2010) 531-545.

DOI: 10.1002/aic.11978

Google Scholar

[9] F. Coletti, E. M. Ishiyama, W. R. Paterson, D. I. Wilson, S. Macchietto, Impact of deposit aging and surface roughness on thermal fouling: distributed model, AIChE Journal, 56 (2010) 3257-3273.

DOI: 10.1002/aic.12221

Google Scholar

[10] ESDU, Heat exchanger fouling in preheat train of a crude oil distillation unit, ESDU Data Item No. 00016, ESDU International plc, London, UK, (2000).

Google Scholar

[11] H. Müller-Steinhagen, Fouling of heat exchanger surfaces, Chemistry and Industry, 6 (1995) 171-175.

Google Scholar

[12] A. J. Waters, C. G. Akinradewo, D. Lamb, Fouling: implementation of a crude preheat train performance monitoring application at the irving oil refinery, in Heat Exchanger Fouling and Cleaning VIII, H. Müller-Steinhagen, M. Malayeri and A. P. Watkinson (Eds. ), Schladming, Austria, 2009, pp.33-38.

DOI: 10.1080/01457632.2013.737751

Google Scholar

[13] T. R. Bott, Fouling of Heat Exchangers, Elsevier, New York, (1995).

Google Scholar

[14] A. P. Watkinson, and D. I. Wilson, Chemical reaction fouling: A review, Experimental Thermal and Fluid Science, 14 (1997) 361-374.

DOI: 10.1016/s0894-1777(96)00138-0

Google Scholar

[15] D. I. Wilson, G. T. Polley, and S. J. Pugh, Mitigation of crude oil preheat train fouling by design, Heat Transfer Engineering, 23 (2002) 24-37.

DOI: 10.1080/014576302753249589

Google Scholar

[16] D. I. Wilson, and G. T. Polley, Mitigation of refinery preheat train fouling by nested optimisation, in Advances in Refinery Fouling Mitigation Session No. 46, AIChE, Houston, 2000, pp.287-294.

Google Scholar

[17] N. Epstein, Thinking about heat transfer fouling: A 5 _ 5 matrix, Heat Transfer Eng. 4 (1983) 43–56.

DOI: 10.1080/01457638108939594

Google Scholar

[18] W. A. Ebert, and C. B. Panchal, Analysis of Exxon crude-oil-slip-stream coking data", in fouling mitigation of Industrial heat exchangers, in Fouling Mitigation of Industrial Heat Exchangers, C. B. Panchal, T. R. Bott, E. F. C. Somerscales and S. Toyama (Eds. ), New York, 1995, pp.451-460.

DOI: 10.1016/b978-044482186-7/50018-x

Google Scholar

[19] G. Dickakian, and S. Seay, Asphaltene precipitation primary crude exchanger fouling mechanism, Oil Gas Journal, 86 (1988) 47-50.

Google Scholar

[20] J. D. Knudesen, D. Lin, and W. A. Ebert, The determination of the threshold fouling curve for a crude oil, in Understanding Heat Exchanger Fouling and its Mitigation, T. R. Bott, L. E. Melo, C. B. Panchal, and E. F. C. Somerscales (Eds. ), New York, 1999, pp.265-272.

Google Scholar

[21] R. S. T. Ma, and N. Epstein, Optimum cycles for falling rate processes, Canadian Journal of Chemical Engineering, 59 (1981) 631-633.

DOI: 10.1002/cjce.5450590512

Google Scholar

[22] S. Macchietto et al., Fouling in crude oil preheat trains: a systematic solution to an old problem, in Heat exchanger Fouling and Cleaning VIII, H. Müller-Steinhagen, M. Malayeri and A. P. Watkinson (Eds. ), Schladming, Austria, 2009, pp.1-14.

DOI: 10.1080/01457632.2013.737751

Google Scholar

[23] T. Pogiatzis, E. M. Ishiyama, W. R. Paterson, V. S. Vassiliadis, and D. I. Wilson, Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing, Applied Energy (2011), in press.

DOI: 10.1016/j.apenergy.2011.01.063

Google Scholar

[24] V. R. Radhakrishnan, et al., Heat exchanger fouling model and preventive maintenance scheduling tool, Applied Thermal Engineering, 27 (2007) 2791-2802.

DOI: 10.1016/j.applthermaleng.2007.02.009

Google Scholar

[25] I. A. Wiehe, The chemistry of petroleum fouling, in Refinery Processing, AIChE, New York, 2001, pp.204-210.

Google Scholar

[26] I. A. Wiehe, and R. J. Kennedy, compatibility model and crude oil incompatibility, Energy and Fuels, 14 (2000) 56-59.

DOI: 10.1021/ef990133+

Google Scholar

[27] F. Smaïli, V. S. Vassiliadis, and D. I. Wilson, Optimization Of Cleaning Schedules in Heat Exchanger Networks subject To Fouling, Chemical Engineering Commun. 189 (2002) 1517.

DOI: 10.1080/00986440214999

Google Scholar

[28] F. S. Liporace, and S. G. De Oliveira, Real time fouling diagnosis and heat exchanger performance, Heat Transfer Engineering, 28 (2007) 193-201.

DOI: 10.1080/01457630601064595

Google Scholar

[29] D. I. Wilson, E. M. Ishiyama, W. R. Paterson, and A. P. Watkinson, Ageing: looking back and looking forward, in Heat Exchanger Fouling and Cleaning VIII, H. Müller-Steinhagen, M. Malayeri and A. P. Watkinson (Eds. ), Schladming, Austria, 2009, pp.221-230.

DOI: 10.1080/01457632.2013.737751

Google Scholar

[30] E. M. Ishiyama, A. V. Heins, W. R. Paterson, L. Spinelli, and D. I. Wilson, Scheduling cleaning in a crude oil preheat train subject to fouling: Incorporating desalter control, Applied Thermal Engineering, 30 (2010) 1852-1862.

DOI: 10.1016/j.applthermaleng.2010.04.027

Google Scholar

[31] Ishiyama, E. M., W. R. Paterson, and D. I Wilson, Platform for Techno-economic Analysis of Fouling Mitigation Options in Refinery Preheat Trains, Energy & Fuels, 23 (2008) 1323-133.

DOI: 10.1021/ef8005614

Google Scholar

[32] W. L. Nelson, Fouling of heat exchangers, Refiner Nat Gas Manufacturer, 13 (1934) 271–276.

Google Scholar

[33] W. L. Nelson, Fouling of heat exchangers II, Refiner Nat Gas Manufacturer, 13 (1934) 292–298.

Google Scholar

[34] D. I. Wilson, Challenges in cleaning: Recent developments and future prospects, Heat Transfer Engineering, 26 (2005) 51-59.

DOI: 10.1080/01457630590890175

Google Scholar

[35] F. Smaïli, V.S. Vassiliadis, VS and D. I. Wilson, Long-term scheduling of cleaning of heat exchanger networks: comparison of outer approximation-based solutions with a backtracking threshold accepting algorithm, Chemical Engineering Research and Design, 80 (2002).

DOI: 10.1205/026387602760312764

Google Scholar

[36] L. O. de Oliveira Filho, F. S. Liporace, M. E. Queiroz, and Costa, Investigation of an alternative operating procedure for fouling management in refinery crude preheat trains, Applied Thermal Engineering, 29 (2009) 3073-3080.

DOI: 10.1016/j.applthermaleng.2009.04.012

Google Scholar

[37] F. Smaïli et al., Optimization of scheduling of cleaning in heat exchanger networks subject to fouling: sugar industry case study, Food and Bioproducts Processing, 77 (1999) 159-164.

DOI: 10.1205/096030899532312

Google Scholar

[38] S. Sanaye, and B. Niroomand, Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule, Energy Conversion and Management, 48 (2007) 1450-146.

DOI: 10.1016/j.enconman.2006.12.006

Google Scholar

[39] E. Casado, Model optimizes exchanger cleaning, Hydrocarbon Process, 69 (1990) 71 -76.

Google Scholar

[40] J. H. Lavaja, and M. J. Bagajewicz, On a new MILP model for the planning of heat-exchanger network cleaning, Industrial & Engineering Chemistry Research, 43 (2004) 3924-3938.

DOI: 10.1021/ie034178g

Google Scholar

[41] M. Markowski, and K. Urbaniec, Optimal cleaning schedule for heat exchangers in a heat exchanger network, Applied Thermal Engineering, 25 (2005) 1019-1032.

DOI: 10.1016/j.applthermaleng.2004.06.025

Google Scholar

[42] C. Rodriguez, and R. Smith, Optimization of Operating Conditions for Mitigating Fouling in Heat Exchanger Networks, Chemical Engineering Research and Design, 85 (2007) 839-85.

DOI: 10.1205/cherd06046

Google Scholar

[43] M. C. Georgiadis, and L. G. Papageorgiou, Optimal energy and cleaning management in heat exchanger networks under fouling, Chemical Engineering Research and Design, 78 (2000) 168-179.

DOI: 10.1205/026387600527194

Google Scholar

[44] M. C Georgiadis, L. G. Papageorgiou, and S. Macchietto, Optimal cleaning policies in heat exchanger networks under rapid fouling, Industrial & Engineering Chemistry Research, 39 (2000) 441-454.

DOI: 10.1021/ie990166c

Google Scholar

[45] J. H. Lavaja, and M. J. Bagajewicz, On a new MILP model for the planning of heat-exchanger network cleaning. Part II:  Throughput loss considerations, Industrial & Engineering Chemistry Research, 44 (2005) 8046-8056.

DOI: 10.1021/ie0503186

Google Scholar

[46] J. H. Lavaja, and M. J. Bagajewicz, On a new MILP model for the planning of heat-exchanger network cleaning. Part III:  Multiperiod cleaning under uncertainty with financial risk management, Industrial & Engineering Chemistry Research, 44 (2005).

DOI: 10.1021/ie050319y

Google Scholar

[47] F. Coletti, and S. Macchietto, A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling, Industrial and Engineering Chemistry Research, 50 (2011) 4515-4533.

DOI: 10.1021/ie901991g

Google Scholar

[48] Ishiyama, E. M., W. R. Paterson, and D. I. Wilson, Exploration of alternative models for the aging of fouling deposits, AIChE Journal (2011), in press.

DOI: 10.1002/aic.12514

Google Scholar