[1]
J. J. Sarralle and L. S. Myers, A program for measuring fractal dimension, Educational and Psycological measurement vol. 54, pp.94-97, (1994).
Google Scholar
[2]
L. M. Alves, R. V. Da Silva, and B. J. Mokross, Influence of crack fractal geometry on elastic-plastic fracture mechanics, Physica A: Statistical Mechanics and its Applications, vol. 295, pp.144-148, (2001).
DOI: 10.1016/s0378-4371(01)00067-x
Google Scholar
[3]
N. Luzia, Hausdroff dimension of certain random self-affine fractals.
Google Scholar
[4]
Self-affinity and fractal dimension, Physica Scripta: , vol. 32, pp.257-260 (1985).
Google Scholar
[5]
N. P. Greis, Implication of a power-law power-spectrum for self-affinity, Phys. Rev. A 44, p.2324–2334, (1991).
DOI: 10.1103/physreva.44.2324
Google Scholar
[6]
B. B. Mandelbrot, Self-Aff ine Fractals and Fractal Dimension, Physica Scripta, vol. 32, pp.257-260, (1985).
DOI: 10.1088/0031-8949/32/4/001
Google Scholar
[7]
G. Zhou, M. leu, and D. Blackmore, Fractal geometry modeling with applications in surface characterisation and wear prediction, Int. J. Mach. Tools Manufact, vol. 35, pp.203-209, (1995).
DOI: 10.1016/0890-6955(94)p2374-o
Google Scholar
[8]
P. Kotowski, Fractal dimension of metallic fracture surface, Int J Fract, vol. 141, p.269–286, (2006).
DOI: 10.1007/s10704-006-8264-x
Google Scholar
[9]
Falconer, Fractal geometry : Mathematical foundations and applications ney York: Willey (1990).
Google Scholar
[10]
B. B. Mandelbrot, The fractal geometry of nature, (1987).
Google Scholar
[11]
F. M. Borodich, Some fractal models of fracture J. Mech. Phys. Solids, vol. 45, pp.239-259, (1997).
Google Scholar
[12]
C. Tricot, Curves and fractal dimension: Springer, (1995).
Google Scholar
[13]
S. W. Z. B. Dubuc, C. Tricot, J. F. Quiniou and D. Wehbi, Evaluating the Fractal Dimension of Surfaces, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 425, pp.113-127, (1989).
DOI: 10.1098/rspa.1989.0101
Google Scholar
[14]
T. Li and K. Park, Fractal analysis of pharmaceutical particles by atomic force microscopy., Pharmaceutical research, vol. 15, (1998).
Google Scholar
[15]
E. Charkaluk, M. Bigerlle, and A. lost, Fractal and Fracture, Engineering Fracture Mechanics, vol. 61, pp.119-139, (1998).
Google Scholar
[16]
D. SHI, J. Jiang, E. Tian, and C. lung, Perimeter-Area realtion and fractal Dimension of fracture surfaces, J. Mater. Sci Technol vol. 13, (1997).
Google Scholar
[17]
C. W. Lung and Z. Q. Mu, Fractal dimension measured with perimeter-area relation and toughness of materials, Phys. Rev., vol. B 38, p.11781–11784, (1988).
DOI: 10.1103/physrevb.38.11781
Google Scholar
[18]
Y. -h. Taguchi, Lacunarity and universality, J. Phys. A: Math. Gen. , vol. 20, pp.6611-6616., (1987).
DOI: 10.1088/0305-4470/20/18/058
Google Scholar
[19]
B. B. Mandelbrot, The fractal geometry of nature, (1983).
Google Scholar
[20]
Y. Bo-gang, Z. Bao-gang, F. Zhong, and H. Guang-shun, A algorithm on branches number of a tree based on extended fractal square root law, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences., vol. Vol. XXXVII. Part B4, (2008).
Google Scholar
[21]
T. C. Haba, G. L. Loum, and G. Ablart, An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral imension, Chaos, Solitons and Fractals, vol. 33, p.364–373, (2007).
DOI: 10.1016/j.chaos.2006.01.123
Google Scholar
[22]
E. z. Gabrys, M. Rybaczuk, and A. Kezdzia, Fractal models of circulatory system. Symmetrical and asymmetrical approach comparison, Chaos, Solitons and Fractals, vol. 24, p.707–715, (2005).
DOI: 10.1016/j.chaos.2004.09.087
Google Scholar
[23]
R. M. Frongillo, E. Lock, and D. A. Brown, Symmetric fractal trees in three dimensions, Chaos, Solitons and Fractals, vol. 32, p.284–295, (2007).
DOI: 10.1016/j.chaos.2006.04.036
Google Scholar