[1]
Liu, W.X., K.H. Yuan, and D.T. Ye, Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis. Journal of Biomedical Informatics, 2008. 41(4): pp.602-606.
DOI: 10.1016/j.jbi.2007.12.003
Google Scholar
[2]
Pauca, V.P., J. Piper, and R.J. Plemmons, Nonnegative matrix factorization for spectral data analysis. Linear Algebra and Its Applications, 2006. 416(1): pp.29-47.
DOI: 10.1016/j.laa.2005.06.025
Google Scholar
[3]
Cichocki, A., S. Amari, and R. Zdunek, Extended SMART algorithms for nonnegative matrix factorization. In: Proc. Eighth Internat. Conf. on Artificial Intelligence and Soft Computing, Zakopane, Poland., (2006).
DOI: 10.1007/11785231_58
Google Scholar
[4]
Lin, C.J., On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. Neural Networks, 2007. 18: p.1589–1596.
DOI: 10.1109/tnn.2007.895831
Google Scholar
[5]
Cichocki, A., R. Zdunek, and S. Amari, Csiszár's divergences for non-negative matrix factorization: Family of new algorithms. In: Proc. Internat. Conf. on Independent Component Analysis and Blind Signal Separation, Charleston, South Carolina., (2006).
DOI: 10.1007/11679363_5
Google Scholar
[6]
Liu, W.X., K.H. Yuan, and D.T. Ye, On alpha-divergence based nonnegative matrix factorization for clustering cancer gene expression data. Artificial Intelligence in Medicine, 2008. 44(1): pp.1-5.
DOI: 10.1016/j.artmed.2008.05.001
Google Scholar
[7]
Cichocki, A., S. Cruces, and S. Amari, Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization. Entropy, 2011. 13(1): pp.134-170.
DOI: 10.3390/e13010134
Google Scholar
[8]
Cichocki, A. and S. -i. Amari, Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities. Entropy, 2010. 12: pp.1532-1568.
DOI: 10.3390/e12061532
Google Scholar