Preparation, Thermal Stability and Electrochemical Properties of LiODFB

Article Preview

Abstract:

Lithium difuoro(axalato)bonate (LiODFB) was synthesized in dimethyl carbonate solvent and purified by the method of solventing-out crystallization. The structure characterization and thermal stability of LiODFB was performed by Fourier transform infrared (FTIR) spectrometry, nuclear magnetic resonance (NMR) spectrometry and thermogravimetric analyzer (TGA). LiODFB was exposed to 50% humidity air at 25°C for different time, then dried at 80°C for 12h, and the electrochemical properties of the cells using 1 mol/L dried LiODFB in ethylene carbonate + dimethyl carbonate + ethyl(methyl)carbonate were investigated. The results show that, pure crystallization LiODFB has been obtained; it has good thermal stability with a thermal decomposition temperature of 248°C; exposed to humidity air, it is firstly converted into LiODFB•H2O; with the exposed time increasesing, more and stronger impurity peaks in the XRD patterns of LiODFB are observed, both the discharge specific capacity and the capacity retention decrease gradually

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1106-1111

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Diaw, A. Cangnes, B. Carre, P. Willmann, D. Lemordant, J Power Sources. 146(2005), p.682.

Google Scholar

[2] L. Larush-Asraf.M. Biton, H. Teller, E. Zinigrad, D. Aurbach, J Power Sources. 174(2007), p.400.

DOI: 10.1016/j.jpowsour.2007.06.171

Google Scholar

[3] S.E. Sloop, J.K. Pugh, S. Wang, J.B. Kerr, K. Kinoshita, Electrochem. Solid-State Lett. 4(2001), p.42-A44.

Google Scholar

[4] M.M. Thackeray, Prog. Solid State Chem. 25(1997), pp.1-7.

Google Scholar

[5] M.S. Whittingham, Chem. Rev. 104(2004), pp.4271-4301.

Google Scholar

[6] S. S Zhang, J. Power Sources. 180(2008), pp.586-590.

Google Scholar

[7] S. S Zhang, J. Power Sources 163(2007), pp.713-718.

Google Scholar

[8] S. S Zhang, J. Electrochem. Commun. 8(2006), pp.1423-1428.

Google Scholar

[9] Z.H. Chen, J. Liu, K. Amine, J. Elctrochem. Soc. 10(3)2007), p. A45-A47.

Google Scholar

[10] V. Aravindan, P. Vickraman, Solid State Sciences 9(2007), pp.1069-1073.

Google Scholar

[11] V. Aravindan, P. Vickraman, K. Krishnaraj, Polymer International 57(2008), pp.932-938.

Google Scholar

[12] H. Gao, Z. Zhang, Y. Lai, J. Li, Y. Liu, J. Cent. South Univ. Technol. 15(2008), pp.830-834.

Google Scholar

[13] Z. Chen, Y. Qin, J. Liu, K. Amine, Electrochem. Solid-State Lett. 12(2009), p. A69-A72.

Google Scholar

[14] J. Li, K. Xie, Y. Lai, Z. Zhang, F. Li, X. Hao, X. Chen, Y. Liu, J. Power Sources 195(2010), pp.5344-5350.

Google Scholar

[15] M. Fu, K. Huang, S. Liu, J. Liu, Y. Li, J. Power Sources 195(2010), pp.862-866.

Google Scholar

[16] Z. Zhang, X. Chen, F. Li, Y. Lai, J. Li, P. Liu, X. Wang, J. Power Sources 195(2010), pp.7397-7402.

Google Scholar

[17] S. Zugmann, D. Moosbauer, M. Amereller, C. Schreiner, F. Wudy, J. Power Sources 196(2011), pp.1417-1424.

DOI: 10.1016/j.jpowsour.2010.08.023

Google Scholar

[18] T. Herzig, C. Schreiner, D. Gerhard, P. Wasserscheid, J.G. Heiner, J. Fluorine Cehmistry, 128(2007), pp.612-618.

Google Scholar

[19] G.V. Zhuang, K. Xu, T.R. Jow, P.N. Ross, Electrochem. Solid-State Lett. 7(2004), p. A224-A227.

Google Scholar

[20] B.T. Yu, W.H. Qiu, F.S. Li, G.X. Xu, Electrochem. Solid-State Lett. 9(2006), p. A1-A4.

Google Scholar

[21] A. Vanchiappan, V. Palanisamy, K. Kaliappa, Polymer International 57(2008), pp.932-938.

Google Scholar

[22] M. Amereller, M. Multerer, C. Schreiner, J. Lodermeyer, A. Schmid, J. Barthel, H.J. Gores, J. Chem. Eng. Data 54(2009), pp.468-471.

DOI: 10.1021/je800473h

Google Scholar