Densification Process of WC-MgO Nanocomposite Based on Master Sintering Curve

Article Preview

Abstract:

The master sintering curve (MSC) of nanocomposite WC-MgO was constructed based on the combined-stage sintering model. Nano-sized WC-4.3wt%MgO powder with average particle size of 35nm was synthesized by high-energy ball milling, and then uniaxially pressed at the pressure of 500MPa to fabricate green compacts. The shrinkage response of the compacts, used to construct the master sintering curve, were studied by dilatometric runs at two constant heating rates of 5°C/min and 10°C/min up to 1900°C. Using the estimated activation energy, the master sintering curves were established and compared to acquire an optimum value (Q=361.8 kJ/mol). The obtained MSC was validated by non-isothermal sintering with the identical green compacts. The results demonstrate that the MSC can be applied successfully to predict and control shrinkage level and final density during heating up regardless of heating rates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-238

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. S. El-Eskandarany, Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature, J. Alloys Compd. 296 (2000) 175-182.

DOI: 10.1016/s0925-8388(99)00508-3

Google Scholar

[2] J. Ma, S. G. Zhu, P. Di, Y. Zhang, Influence of La2O3 addition on hardness, flexural strength and microstructure of hot-pressing sintered WC-MgO bulk composites, Mater. Design. 32 (2011) 2125-2129.

DOI: 10.1016/j.matdes.2010.11.038

Google Scholar

[3] S. Sutthiruangwong, G. Mori, Corrosion properties of Co-based cemented carbides in acidic solutions, Int. J. Refract. Met. Hard. Mater. 21 (2003) 135-145.

DOI: 10.1016/s0263-4368(03)00027-1

Google Scholar

[4] O. Malek, B. Lauwers, Y. Perez, P. D. Baets, J. Vleugels, Processing of ultrafine ZrO2 toughened WC composite, J. Eur. Ceram. Soc. 29 (2009) 3371-3378.

DOI: 10.1016/j.jeurceramsoc.2009.07.013

Google Scholar

[5] J. Ma, S. G. Zhu, C. X. Ouyang, Two-step hot-pressing sintering of nanocomposite WC-MgO compacts, J. Eur. Ceram. Soc. 31 (2011) 1927-(1935).

DOI: 10.1016/j.jeurceramsoc.2011.04.001

Google Scholar

[6] C. X. Wu, S. G. Zhu, J. Ma, M. L. Zhang, Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling, J. Alloys Compd. 478 (2009) 615-619.

DOI: 10.1016/j.jallcom.2008.11.100

Google Scholar

[7] J. Ma, S. G. Zhu, C. X. Wu, M. L. Zhang, Application of back-propagation neural network technique to high-energy planetary ball milling process for synthesizing nanocomposite WC-MgO powders, Mater. Design. 30 (2009) 2867-2874.

DOI: 10.1016/j.matdes.2009.01.016

Google Scholar

[8] H. Su, D. L. Johnson, Master sintering curve: A practical approach to sintering, J. Am. Ceram. Soc. 79 (1996) 3211-3217.

DOI: 10.1111/j.1151-2916.1996.tb08097.x

Google Scholar

[9] J. Hansen, R. P. Rusin, M. Teng, D. L. Johnson, Combined stage sintering model, J. Am. Ceram. Soc. 75 (1992) 1129-1135.

DOI: 10.1111/j.1151-2916.1992.tb05549.x

Google Scholar

[10] Y. Kinemuchi, K. Watari, Dilatometer analysis of sintering behavior of nano-CeO2 particles, J. Eur. Ceram. Soc. 28 (2008) 2019-(2024).

DOI: 10.1016/j.jeurceramsoc.2008.02.003

Google Scholar

[11] K. G. Ewsuk, D. T. Ellerby, C. B. Diantonio, Analysis of nanocomposite and microcrystalline ZnO sintering using master sintering curve, J. Am. Ceram. Soc. 89 (2006) 2003-(2009).

DOI: 10.1111/j.1551-2916.2006.00990.x

Google Scholar

[12] X. C. Song, J. Lu, T. S. Zhang, J. Ma, Two-stage master sintering curve approach to sintering kinetics of undoped and Al2O3-doped 8mol% yttria-stabilized cubic zirconia, J. Am. Ceram. Soc. 94 (2011) 1053-1059.

DOI: 10.1111/j.1551-2916.2010.04199.x

Google Scholar

[13] D. Li, S. Chen, W. Q. Shao, X. H. Ge, Y. C. Zhang, S. S. Zhang, Densification evolution of TiO2 ceramics during sintering based on the master sintering curve theory, Mater. Lett. 62 (2008) 849-851.

DOI: 10.1016/j.matlet.2007.06.076

Google Scholar

[14] M. Mazaheri, A. Simchi, M. Dourandish, F. Golestani-Fard, Master sintering curves of a nanoscale 3Y-TZP powder compacts, Ceram. Int. 35 (2009) 547-554.

DOI: 10.1016/j.ceramint.2008.01.008

Google Scholar

[15] R. Caruso, N. Mamana, E. Benavidez, Densification kinetics of ZrO2-based ceramics using a master sintering curve, J. Alloys Compd. 495 (2010) 570-573.

DOI: 10.1016/j.jallcom.2009.11.080

Google Scholar

[16] D. C. Blaine, S. J. Park, R. M. German, Linearization of master sintering curve, J. Am. Ceram. Soc. 92 (2009) 1403-1409.

DOI: 10.1111/j.1551-2916.2009.03011.x

Google Scholar

[17] M. H. Teng, Y. C. Lai, Y. T. Chen, A computer program of master sintering curve model to accurately predict sintering results, Western Pacific Earth Sci. 2 (2002) 171-180.

Google Scholar