[1]
M. S. El-Eskandarany, Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature, J. Alloys Compd. 296 (2000) 175-182.
DOI: 10.1016/s0925-8388(99)00508-3
Google Scholar
[2]
J. Ma, S. G. Zhu, P. Di, Y. Zhang, Influence of La2O3 addition on hardness, flexural strength and microstructure of hot-pressing sintered WC-MgO bulk composites, Mater. Design. 32 (2011) 2125-2129.
DOI: 10.1016/j.matdes.2010.11.038
Google Scholar
[3]
S. Sutthiruangwong, G. Mori, Corrosion properties of Co-based cemented carbides in acidic solutions, Int. J. Refract. Met. Hard. Mater. 21 (2003) 135-145.
DOI: 10.1016/s0263-4368(03)00027-1
Google Scholar
[4]
O. Malek, B. Lauwers, Y. Perez, P. D. Baets, J. Vleugels, Processing of ultrafine ZrO2 toughened WC composite, J. Eur. Ceram. Soc. 29 (2009) 3371-3378.
DOI: 10.1016/j.jeurceramsoc.2009.07.013
Google Scholar
[5]
J. Ma, S. G. Zhu, C. X. Ouyang, Two-step hot-pressing sintering of nanocomposite WC-MgO compacts, J. Eur. Ceram. Soc. 31 (2011) 1927-(1935).
DOI: 10.1016/j.jeurceramsoc.2011.04.001
Google Scholar
[6]
C. X. Wu, S. G. Zhu, J. Ma, M. L. Zhang, Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling, J. Alloys Compd. 478 (2009) 615-619.
DOI: 10.1016/j.jallcom.2008.11.100
Google Scholar
[7]
J. Ma, S. G. Zhu, C. X. Wu, M. L. Zhang, Application of back-propagation neural network technique to high-energy planetary ball milling process for synthesizing nanocomposite WC-MgO powders, Mater. Design. 30 (2009) 2867-2874.
DOI: 10.1016/j.matdes.2009.01.016
Google Scholar
[8]
H. Su, D. L. Johnson, Master sintering curve: A practical approach to sintering, J. Am. Ceram. Soc. 79 (1996) 3211-3217.
DOI: 10.1111/j.1151-2916.1996.tb08097.x
Google Scholar
[9]
J. Hansen, R. P. Rusin, M. Teng, D. L. Johnson, Combined stage sintering model, J. Am. Ceram. Soc. 75 (1992) 1129-1135.
DOI: 10.1111/j.1151-2916.1992.tb05549.x
Google Scholar
[10]
Y. Kinemuchi, K. Watari, Dilatometer analysis of sintering behavior of nano-CeO2 particles, J. Eur. Ceram. Soc. 28 (2008) 2019-(2024).
DOI: 10.1016/j.jeurceramsoc.2008.02.003
Google Scholar
[11]
K. G. Ewsuk, D. T. Ellerby, C. B. Diantonio, Analysis of nanocomposite and microcrystalline ZnO sintering using master sintering curve, J. Am. Ceram. Soc. 89 (2006) 2003-(2009).
DOI: 10.1111/j.1551-2916.2006.00990.x
Google Scholar
[12]
X. C. Song, J. Lu, T. S. Zhang, J. Ma, Two-stage master sintering curve approach to sintering kinetics of undoped and Al2O3-doped 8mol% yttria-stabilized cubic zirconia, J. Am. Ceram. Soc. 94 (2011) 1053-1059.
DOI: 10.1111/j.1551-2916.2010.04199.x
Google Scholar
[13]
D. Li, S. Chen, W. Q. Shao, X. H. Ge, Y. C. Zhang, S. S. Zhang, Densification evolution of TiO2 ceramics during sintering based on the master sintering curve theory, Mater. Lett. 62 (2008) 849-851.
DOI: 10.1016/j.matlet.2007.06.076
Google Scholar
[14]
M. Mazaheri, A. Simchi, M. Dourandish, F. Golestani-Fard, Master sintering curves of a nanoscale 3Y-TZP powder compacts, Ceram. Int. 35 (2009) 547-554.
DOI: 10.1016/j.ceramint.2008.01.008
Google Scholar
[15]
R. Caruso, N. Mamana, E. Benavidez, Densification kinetics of ZrO2-based ceramics using a master sintering curve, J. Alloys Compd. 495 (2010) 570-573.
DOI: 10.1016/j.jallcom.2009.11.080
Google Scholar
[16]
D. C. Blaine, S. J. Park, R. M. German, Linearization of master sintering curve, J. Am. Ceram. Soc. 92 (2009) 1403-1409.
DOI: 10.1111/j.1551-2916.2009.03011.x
Google Scholar
[17]
M. H. Teng, Y. C. Lai, Y. T. Chen, A computer program of master sintering curve model to accurately predict sintering results, Western Pacific Earth Sci. 2 (2002) 171-180.
Google Scholar