[1]
Stirling, D. The sulfur problem: cleaning up industrial feedstocks Cambridge: Royal Society of Chemistry. Vol. (2000), p.33–48.
Google Scholar
[2]
Dorman, D. C., Moulin, F. J. -M., McManus, B. E., Mahle, K. C., James, R. A., & Struve, M. F. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the ratbrain, liver, lung, and nasal epithelium. Toxicological Sciences, Vol. 65(1) (2002).
DOI: 10.1093/toxsci/65.1.18
Google Scholar
[3]
Meyer, B. Sulfur, energy and the environment. Amsterdam. The Netherlands: Elsevier. (1977).
Google Scholar
[4]
Gupta, R. P., Turk, B. S., Portzer, J. W., & Cicero, D. C. Desulfurization of syngas in a transport reactor. Environmental Progress, Vol. 20 (2001), p.187–195.
DOI: 10.1002/ep.670200315
Google Scholar
[5]
Z.J. Li and Flytzani-Stephanopoulos,M. Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization. Ind. Eng. Chem. Res., Vol. 36- 1(1997), pp.187-196.
DOI: 10.1021/ie960245d
Google Scholar
[6]
C.Y. Lan, X.X. He, H. JXu and Y.J. Lu. Study on efficient ferric-oxide desulfurizer under atmospheric temperature. Natural gas industy. Vol. 24-12(2004), p.124~126.
Google Scholar
[7]
Y. Zeng, S. Zhang, F.R. Groves and D.P. Harrisonl. High temperature gas desulfurization with elemental sulfur production . Chemical Engineering Science. 54 (1999), pp.3007-3017.
DOI: 10.1016/s0009-2509(98)00427-8
Google Scholar
[8]
R.B. SlimaneU and J. Abbasian. Regenerable mixed metal oxide sorbents for coal gas desulfurization at moderate temperatures. Advances in Environmental Research 4(2000), pp.147-162.
DOI: 10.1016/s1093-0191(00)00017-4
Google Scholar
[9]
Y. Zeng, S. Kaytakoglu and D.P. Harrison. Reduced cerium oxide as an e$cient and durable high temperature desulfurization sorbent. Chemical Engineering Science. Vol. 55 (2000), pp.4893-4900.
DOI: 10.1016/s0009-2509(00)00117-2
Google Scholar
[10]
H. L Fan, C.H. Li, H. X, Guo, et al. Microkinetics of H2S removal by zinc oxide in the presence of moist gas atmosphere. Journal of Natural Gas Chemistry. Vol. 12(2003) , pp.43-48.
Google Scholar
[11]
X. Wang. J. Jia .L. Zhao and T. Sun. Mesoporous SBA-15 Supported Iron Oxide: A Potent Catalyst for Hydrogen Sulfide Removal. Water Air Soil Pollut. Vol. 193 (2008), p.247–257.
DOI: 10.1007/s11270-008-9686-z
Google Scholar
[12]
P. Liu J.S. Guo. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes. Colloids and Surfaces A: Physicochem. Eng. Aspects 282–283 (2006) , p.498–503.
DOI: 10.1016/j.colsurfa.2006.02.052
Google Scholar
[13]
E.H. Smith, T. Vengris, Clay minerals and heavy metals, Crit. Rev. Anal. Chem. Vol. 28 (1998), p.13–18.
Google Scholar
[14]
A. Garcia Sanchez, E. Alvarez Ayuso, O. Jimenez De Blas, Sorption of heavy metals from industrial waste water by low-cost mineral silicates, Clay Miner. Vol. 34 (1999), p.469–477.
DOI: 10.1180/000985599546370
Google Scholar
[15]
A. Li, J.P. Zhang and A.Q. Wang. Utilization of starch and clay for the preparation of superabsorbent composite. Bioresource Technology . Vol. 98 (2007), p.327–332.
DOI: 10.1016/j.biortech.2005.12.026
Google Scholar
[16]
R.L. Frost, Z. Ding. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Acta. Vol. 397 (2003), p.119–128.
DOI: 10.1016/s0040-6031(02)00228-9
Google Scholar
[17]
Y.S. Liu, P. Liu and Z.X. Su. Core-shell attapulgite@polyaniline composite particles via in situ oxidative polymerization. Synthetic Metals. Vol. 157 (2007), p.585–591.
DOI: 10.1016/j.synthmet.2007.06.009
Google Scholar
[18]
Q.N. Wang, L. Li, S.R. Yu, L. He and F.L. Zhang. Influence on H2S desulfurize by the compound desulfurizer of attapulgite clay andactive metal oxide. Chemical Industry And Ingineering Progress. Vol. 25-1(2006), pp.95-100.
Google Scholar