Springback Angle and Plastic Elongation Prediction of Thin-Walled Tube Bending by FEM

Article Preview

Abstract:

Springback is an inevitable phenomenon while the load is released due to the elastic property after tube bending. This leads to an increase in the radius of curvature and elongation by plastic deformation, a reduction in the bending angle of the bent tube, a decrease in dimensional accuracy and fits with others difficulty. By elastic–plastic finite element methods (FEM), a reasonable simulation model for thin-walled tube bending is established to define the relationships between process parameters and springback angle, plastic deformation. With 210 kinds of models, the results show that: 1) Springback angle and plastic elongation of bending tube are related to bending angle, bending die diameter and tube thickness. 2) Controlling functions for plastic elongation and springback angle in bending tube process are given, which is verified by tube bending experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

456-461

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Murata, T. Kuboki, K. Takahashi et al., Effect of hardening exponent on tube bending, Journal of Materials Processing Technology, Vol. 201(2008), p.189

DOI: 10.1016/j.jmatprotec.2007.11.286

Google Scholar

[2] S. Kyriakides, A. Ok, E. Corona, Localization and propagation of curvature under pure bending in steel tubes with Lüders bands, International Journal of Solids and Structures, Vol.45(2008), p.3074

DOI: 10.1016/j.ijsolstr.2008.01.013

Google Scholar

[3] D. Karagiozova, N. Jones, On the mechanics of the global bending collapse of circular tubes under dynamic axial load—Dynamic buckling transition, International Journal of Impact Engineering, Vol.35(2008), p.397

DOI: 10.1016/j.ijimpeng.2007.04.002

Google Scholar

[4] M. Elchalakani, X. L. Zhao, Concrete-filled cold-formed circular steel tubes subjected to variable amplitude cyclic pure bending, Engineering Structures, Vol.30 (2008), p.287

DOI: 10.1016/j.engstruct.2007.03.025

Google Scholar

[5] M. Goodarzi, T. Kuboki, M. Murata, Effect of initial thickness on shear bending process of circular tubes, Journal of Materials Processing Technology, Vol.191(2007), p.136

DOI: 10.1016/j.jmatprotec.2007.03.007

Google Scholar

[6] X.T. Xiao, Y.J. Liao, Y.S. Sun et al., Study on varying curvature push-bending technique of rectangular section tube, Journal of Materials Processing Technology, Vol.187-188(2007), p.476

DOI: 10.1016/j.jmatprotec.2006.11.190

Google Scholar

[7] H. Li, H. Yang, M. Zhan et al., The interactive effects of wrinkling and other defects in thin-walled tube NC bending process, Journal of Materials Processing Technology, Vol.187-188 (2007), p.502

DOI: 10.1016/j.jmatprotec.2006.11.100

Google Scholar

[8] H. Li, H. Yang, M. Zhan et al., Role of mandrel in NC precision bending process of thin-walled tube, International Journal of Machine Tools and Manufacture, Vol.47( 2007), p.1164

DOI: 10.1016/j.ijmachtools.2006.09.001

Google Scholar

[9] H. Yang, R. Gu, M. Zhan et al., Effect of frictions on cross section quality of thin-walled tube NC bending, Transactions of Nonferrous Metals Society of China, Vol.16 (2006), p.878

DOI: 10.1016/s1003-6326(06)60344-0

Google Scholar

[10] M. Zhan, H. Yang, L. Huang et al., Springback analysis of numerical control bending of thin-walled tube using numerical-analytic method, Journal of Materials Processing Technology, Vol.177 (2006), pp.197-201.

DOI: 10.1016/j.jmatprotec.2006.03.183

Google Scholar